首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
High-pressure infrared spectroscopy was applied to study the hydrogen-bonding structures of 1-butyl-3-methylimidazolium halides/D2O mixtures. No drastic changes were observed in the concentration dependence of the alkyl C-H band frequency at high concentration of 1-butyl-3-methylimidazolium chloride. Nevertheless, the alkyl C-H exhibits an increase in frequency upon dilution at low concentration. These observations may indicate a clustering of the alkyl groups at high concentration and the formation of a certain water structure around alkyl C-H groups in the water-rich region. The imidazolium C-H band at ca. 3051 cm(-1) displays a monotonic blue-shift in frequency as the sample was diluted at high concentration of 1-butyl-3-methylimidazolium chloride. That is, water can be added to change the structural organization of 1-butyl-3-methylimidazolium chloride in the ionic liquid-rich composition region by introducing water-imidazolium C-H interactions. Analyzing the pressure dependence of the imidazolium C-H stretches yielded anomalous nonmonotonic pressure-induced frequency shifts. This result may reflect the strengthening of C-H-O interactions between imidazolium C-H groups and the water clusters. Density functional theory calculations also revealed that the characteristic bonded C2-H vibration may be shifted via the modification of C2-H-Cl- associations.  相似文献   

2.
High-pressure methods were applied to investigate the rotational isomerism and the hydrogen-bonding structures of 1-butyl-3-methylimidazolium bromide and 1-butyl-3-methylimidazolium chloride, respectively. Conformation changes of the butyl chain were observed above a pressure of 0.3 GPa. Under ambient pressure, Raman spectra indicate that the more thermodynamically stable butyl structure of the cations is the gauche-anti (GA) and all-anti forms for 1-butyl-3-methylimidazolium bromide and 1-butyl-3-methylimidazolium chloride, respectively. Nevertheless, the high-pressure phases arise from the perturbed GA conformer. The imidazolium C-H bands of 1-butyl-3-methylimidazolium chloride display anomalous nonmonotonic pressure-induced frequency shifts. This discontinuity in the frequency shift is related to the modification of the imidazolium C-H---Cl- contacts upon compression. The alkyl C-H---Cl- interactions are suggested to be a compensatory mechanism to provide additional stability. Density-functional-theory-calculated results also support the high-pressure results that the methyl and butyl C-H groups are suitable proton donor sites for the GA conformer.  相似文献   

3.
Using high-pressure infrared methods, we have investigated close interactions of charge-enhanced C-H-O type in ionic liquid∕dimethyl sulfoxide (DMSO) mixtures. The solvation and association of the 1-butyl-3-methylimidazolium tetrafluoroborate (BMI(+)BF(4)(-)) and 1-butyl-2,3-dimethylimidazolium tetrafluoroborate (BMM(+)BF(4)(-)) in DMSO-d(6) were examined by analysis of C-H spectral features. Based on our concentration-dependent results, the imidazolium C-H groups are more sensitive sites for C-H-O than the alkyl C-H groups and the dominant imidazolium C-H species in dilute ionic liquid∕DMSO-d(6) should be assigned to the isolated (or dissociated) structures. As the dilute mixtures were compressed by high pressures, the loss in intensity of the bands attributed to the isolated structures was observed. In other words, high pressure can be used to perturb the association-dissociation equilibrium in the polar region. This result is remarkably different from what is revealed for the imidazolium C-H in the BMM(+)BF(4)(-)∕D(2)O mixtures. DFT-calculations are in agreement with our experimental results indicating that C(4)-H-O and C(5)-H-O interactions seem to play non-negligible roles for BMM(+)BF(4)(-)∕DMSO mixtures.  相似文献   

4.
Experimental densities, speeds of sound and refractive indices of the binary mixtures of ethanol with MMIM MeSO4 (1,3-dimethylimidazolium methyl sulfate), BMIM MeSO4 (1-butyl-3-methylimidazolium methyl sulfate), BMIM PF6 (1-butyl-3-methylimidazolium hexafluorophosphate), HMIM PF6 (1-hexyl-3-methylimidazolium hexafluorophosphate) and OMIM PF6 (1-methyl-3-octylimidazolium hexafluorophosphate) were determined from T = (293.15 to 303.15) K. Excess molar volumes, changes of refractive index on mixing and deviations in isentropic compressibility for the above systems were calculated. The (liquid + liquid) equilibrium (LLE) data of (IL + ethanol) were carried out experimentally and the NRTL and UNIQUAC correlative equation was applied to these mixtures.  相似文献   

5.
The kinetic constants and activation parameters for the reactions of Br(3)(-) and ICl(2)(-) with some alkenes and alkynes have been determined in the ionic liquids [bmim][PF(6)], [emim][Tf(2)N], [bmim][Tf(2)N], [hmim][TF(2)N], [bm(2)im][Tf(2)N], and [bpy][TF(2)N] (where emim = 1-ethyl-3-methylimidazolium, bmim = 1-butyl-3-methylimidazolium, hmim = 1-hexyl-3-methylimidazolium, bm(2)im = 1-butyl-2,3-dimethylimidazolium, bpy = butylpyridinium, PF(6) = hexafluorophosphate, and Tf(2)N = bis(trifluoromethylsulfonyl)imide) and in 1,2-dichloroethane. The rates of both reactions increase on going from 1,2-dichloroethane to ILs. Evidence suggests that, while the hydrogen bonding ability of the imidazolium cation is probably the main factor able to increase the rate of the addition of ICl(2)(-) to double and triple bonds, this property has no effect on the electrophilic addition of Br(3)(-) to alkenes and alkynes. Furthermore, in the case of the ICl(2)(-) reaction, the hydrogen bonding ability of ILs can be exploited to suppress the unwanted nucleophilic substitution reaction on the products by the Cl(-) anion.  相似文献   

6.
Experimental (liquid + liquid) equilibria involving ionic liquids {1,3-dimethylimidazolium methyl sulfate (MMIM MeSO4)}, {2-propanol + ethyl acetate + 1-butyl-3-methylimidazolium hexafluorophosphate (BMIM PF6)} and {2-propanol + ethyl acetate + 1-hexyl-3-methylimidazolium hexafluorophosphate (HMIM PF6)} were carried out to separate the azeotropic mixture ethyl acetate and 2-propanol. Selectivity and distribution ratio values, derived from the tie-lines data, were presented in order to analyze the best separation solvent in a liquid extraction process. Experimental (liquid + liquid) equilibria data were compared with the correlated values obtained by means of the NRTL, Othmer-Tobias and Hand equations. These equations were verified to accurately correlate the experimental data.  相似文献   

7.
1-Alkyl-3-methylimidazolium cation based ionic liquids efficiently catalyze N-tert-butyloxycarbonylation of amines with excellent chemoselectivity. The catalytic role of the ionic liquid is envisaged as "electrophilic activation" of di-tert-butyl dicarbonate (Boc(2)O) through bifurcated hydrogen bond formation with the C-2 hydrogen of the 1-alkyl-3-methylimidazolium cation and has been supported by a downfield shift of the imidazolium C-2 hydrogen of 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([bmim][NTf(2)]) from δ 8.39 to 8.66 in the presence of Boc(2)O in the (1)H NMR and a drastic reduction of the catalytic efficiency with 1-butyl-2,3-dimethylimidazolium ionic liquids that are devoid of the C-2 hydrogen. The differential time required for reaction with aromatic and aliphatic amines has offered means for selective N-t-Boc formation during inter and intramolecular competitions. Preferential N-t-Boc formation with secondary aliphatic amine has been achieved in the presence of primary aliphatic amine. Comparison of the catalytic efficiency for N-t-Boc formation with a common substrate revealed that [bmim][NTf(2)] is superior to the reported Lewis acid catalysts.  相似文献   

8.
Raman spectra of the ionic liquids, 1-butyl-3-methylimidazolium hexafluorophosphate ([C4mim][PF6]), 1-hexyl-3-methylimidazolium chloride ([C6mim]Cl), and 1-hexyl-3-methylimidazolium hexafluorophosphate ([C6mim][PF6]), and binary mixtures thereof, have been assigned using ab initio MP2 calculations. The previously reported anti and gauche forms of the [C4mim]+ cation have been observed, and this study reveals this to be a general feature of the long-chain 1-alkyl derivatives. Analysis of mixtures of [C6mim]Cl and [C6mim][PF6] has provided information on the nature of the hydrogen bonding between the imidazolium headgroup and the anions, and the invariance of the essentially 50:50 mixture of the predominant conformers informs on the nature of glass formation in these systems.  相似文献   

9.
The molecular structure and rotational motion of the ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF6]) were studied over a wide temperature range using the Bloembergen–Purcell–Pound 13C NMR spin–lattice relaxation method and NOE factors. Examination of the spin–lattice relaxation times (T 1) and the rates (R 1=1/T 1) of the 1-butyl-3-methylimidazolium cation reveals the relative motions of each carbon in the imidazolium cation. The rotational characteristics of the [BMIM] cation are supported by ab-initio molecular structures of [BMIM][PF6] using density functional theory (DFT) and Hartree–Fock (HF) methods. The ab-initio gas phase structures of [BMIM][PF6] indicate that the 1-butyl-3-methylimidazolium C2 hydrogen, the ring methyl group, and the butyl side-chain hydrogen atoms form hydrogen bonds with the hexafluorophosphate anion.  相似文献   

10.
Using molecular dynamics simulations, the melting points and liquid phase dynamic properties were studied for four alkyl-imidazolium-based ionic liquids, 1-n-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF6]), 1-n-butyl-2,3-dimethylimidazolium hexafluorophosphate ([BMMIM][PF6]), 1-ethyl-3-methylimidazolium hexafluorophosphate ([EMIM][PF6]), and 1-ethyl-2,3-dimethylimidazolium hexafluorophosphate ([EMMIM][PF6]), respectively. Experimentally it has been observed that the substitution of a methyl group for a hydrogen at the C2 position of the cation ring leads to an increase in both the melting point and liquid phase viscosity, contrary to arguments that had been made regarding associations between the ions. The melting points of the four ionic liquids were accurately predicted using simulations, as were the trends in viscosity. The simulation results show that the origin of the effect is mainly entropic, although enthalpy also plays an important role.  相似文献   

11.
Fourier-transform infrared (FTIR) and time-resolved IR spectroscopies have been used to study vibrational band positions, vibrational energy relaxation (VER) rates, and reorientation times of anions in several ionic liquid (IL) solutions. The ILs primarily investigated are based on the 1-butyl-2,3-dimethylimidazolium ([BM(2)IM]) cation with thiocyanate (NCS-), dicyanamide (N(CN)2-), and tetrafluoroborate (BF4-) anions. Spectroscopic studies are carried out near 2000 cm-1 for the C[Triple Bond]N stretching bands of NCS- and N(CN)2- as the IL anion as well as for NCS-, N(CN)2-, and azide (N3-) anions dissolved in [BM2IM][BF4]. The VER studies of N(CN)2- are reported for the first time. VER of N3-, NCS-, and N(CN)2- is measured in normal solvents, such as N-methylformamide, to compare with the IL solutions. The spectral shifts and VER rates of the anions in IL solution are quite similar to those in polar aprotic, conventional organic solvents, i.e., dimethylsulfoxide, and significantly different than those in methanol, in which there is hydrogen bonding. Similar studies were also carried out for the anions in another IL, 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM][BF4]), in which the C2 hydrogen is present. The results for the anions are similar to those in the [BM2IM] containing ILs, in which the C2 hydrogen is methyl substituted. This suggests that substituting this hydrogen has, at most, a minor effect on the degree of hydrogen bonding in the anion-IL solvation interaction based on the infrared spectra and dynamics.  相似文献   

12.
A quantum-chemical computational approach to accurately predict the nuclear magnetic resonance (NMR) properties of 1-alkyl-3-methylimidazolium ionic liquids has been performed by the gauge-including atomic orbitals method at the B3LYP/6-31++G** level using different simulated ionic liquid environments. The first molecular model chosen to describe the ionic liquid system includes the gas-phase optimized structures of ion pairs and separated ions of a series of imidazolium salts containing methyl, butyl, and octyl substituents and PF6-, BF4-, and Br- anions. In addition, a continuum polarizable model of solvation has been applied to predict the effects of the medium polarity on the molecular properties of 1,3-dimethylimidazolium hexafluorophosphate (MmimPF6). Furthermore, the specific acidic and basic solute-solvent interactions have been simulated by a discrete solvation model based on molecular clusters formed by MmimPF6 species and a discrete number of water molecules. The computational prediction of the NMR spectra allows a consistent interpretation of the dispersed experimental evidence in the literature. The following are main contributions of this work: (a) Theoretical results state the presence of a chemical equilibrium between ion-pair aggregates and solvent-separated counterions of 1-alkyl-3-methylimidazolium salts which is tuned by the solvent environment; thus, strong specific (acidic and basic) and nonspecific (polarity and polarizability) solvent interactions are predicted favoring the dissociated ionic species. (b) The calculated 1H and 13C NMR properties of these ionic liquids are revealed as highly dependent on the nature of solute-solvent interactions. Thus, the chemical shift of the hydrogen atom in position two of the imidazolium ring is deviated to high values by the specific interactions with water molecules, whereas nonspecific interaction with water (as a solvent) affects, in the opposite direction, this 1H NMR parameter. (c) Last, current calculations support the presence of hydrogen bonding between counterions, suggesting the importance of this interaction in the properties of the solvent in the 1-alkyl-3-methylimidazolium ionic liquids.  相似文献   

13.
吡咯烷酮酸性离子液体中硼酸酯的催化合成   总被引:1,自引:0,他引:1  
研究了硼酸与频哪醇和环己醇在离子液体1-甲基-2-吡咯烷酮硫酸氢盐([Hnmp]HSO4)、1-丁基-3-甲基咪唑四氟硼酸盐([Bmim]BF4)及1-丁基-3-甲基咪唑六氟磷酸盐([Bmim]PF6)中生成2-环己氧基-4,4,5,5-四甲基-1,3,2-二氧硼烷的酯化反应。 考察了不同离子液体、反应温度、反应时间和离子液体与反应物物质的量比等对反应的影响。 结果表明,当n(硼酸)∶n(频哪醇)∶n(环己醇)∶n([Hnmp]HSO4)=1∶1∶1∶1,反应温度为70 ℃和反应时间为4 h时,硼酸酯的产率为72.5%,离子液体重复使用4次,催化活性无明显降低。  相似文献   

14.
Crystal structures of two examples of an important class of ionic liquids, 1,3-dimethylimidazolium and 1,2,3-triethylimidazolium bis(trifluoromethanesulfonyl)imide have been characterized by single crystal X-ray diffraction. The anion in the 1,3-dimethylimidazolium example (mp 22 degrees C), adopts an unusual cis-geometry constrained by bifurcated cation-anion C-H. . .O hydrogen-bonds from the imidazolium cation to the anion resulting in the formation of fluorous layers within the solid-state structure. In contrast, in the 1,2,3-triethylimidazolium salt (mp 57 degrees C), the ions are discretely packed with only weak C-H. . .O contacts between the ions close to the van der Waals separation distances, and with the anion adopting the twisted conformation observed for all other examples from the limited set of organic bis(trifluoromethanesulfonyl)imide crystal structures. The structures are discussed in terms of the favorable physical properties that bis(trifluoromethanesulfonyl)imide anions impart in ionic liquids.  相似文献   

15.
In this study, novel ionic liquids formed between the 1-ethyl-3-methylimidazolium cation [emim]+ and the glycine anion [Gly]- have been investigated theoretically. The relevant geometrical characteristics, energy properties, the characters of the intermolecular hydrogen bonds (H bonds), and the possibility of proton transfer as well as IR characteristics have been systematically discussed. The natural bond orbital (NBO) and atoms in molecule (AIM) analyses have also been applied to understand the nature of the interactions between ionic pairs in ionic liquids. The most stable geometries have been determined by analyzing the relative energies and interaction energies, where the C-H...O intermolecular H bonds involving the protons attached to the imidazolium ring have been found to possess partial covalent character in nature. Electron transfers from the lone pairs of the carbonyl O atom of [Gly]- to the C-H antibonding orbital of the [emim]+ can explain the elongation and red shift of the C-H stretching frequency. The interaction modes are more favorable when the carbonyl O atoms of [Gly]- interact with the C2-H of the imidazolium ring and the C-H of the methyl group through the formation of double H bonds. The origin of the high stability of the amino acid ionic liquids observed experimentally may be attributed to the nonexistence of the proton-transferred products (neutral pairs) together with the large energy needed for separation of the ionic pairs. Additionally, the characteristics of the IR spectra have been analyzed to demonstrate the variants of the molecular structure of the [emim]+[Gly]- ionic liquids.  相似文献   

16.
Condensation of alkyl 4-dialkoxyphosphoryl-3-methylbut-2-enoates with a number of aldehydes under the Horner—Emmons reaction conditions in 1-butyl-3-methylimidazolium hexafluorophosphate and tetrafluoroborate and in 1-butyl-3-methylimidazolium bromide—benzene and 1-butyl-2,3-dimethylimidazolium hexafluorophosphate—benzene systems was studied. The E/Z-stereoisomer ratio of the olefination products for the reaction carried out in ionic liquids was 3 : 1, which corresponds to the values attained previously in the KOH—benzene—Bu4 nNBr (cat.) system. Quantum-chemical calculations were used to determine the averaged radii (r 0) of the [Bu4 nN] and substituted imidazolium cations by means of the Gaussian 98 program package. The stereoselectivity of olefination in the KOH—PhH—phase-transfer catalyst system decreases with a decrease in the r 0 value for the catalyst cation. The possibility of recovery and reuse of ionic liquids is demonstrated.  相似文献   

17.
The equilibrium structures, binding energies, and vibrational spectra of the cyclic, hydrogen-bonded complexes formed between formaldehyde, H(2)CO, and hydrogen fluoride clusters, (HF)(1< or =n < or =4), are investigated by means of large-scale second-order M?ller-Plesset calculations with extended basis sets. All studied complexes exhibit marked blue shifts of the C-H stretching frequencies, exceeding 100 cm(-1) for n = 2-4. It is shown that these blue shifts are, however, only to a minor part caused by blue-shifting hydrogen bonding via C-H...F contacts. The major part arises due to the structural relaxation of the H(2)CO molecule under the formation of a strong C=O...H-F hydrogen bond which strengthens as n increases. The close correlation between the different structural parameters in the studied series of complexes is demonstrated, and the consequences for the frequency shifts in the complexes are pointed out, corroborating thus the suggestion of the primary role of the C=O...H-F hydrogen bonding for the C-H stretching frequency shifts. This particular behavior, that the appearance of an increasingly stronger blue shift of the C-H stretching frequencies is mainly induced by the formation of a progressively stronger C=O...H-F hydrogen bond in the series of H(2)CO...(HF)(1< or =n < or =4), complexes and only to a lesser degree by the formation of the so-called blue-shifting C-H...F hydrogen bond, is rationalized with the aid of selected sections of the intramolecular H(2)CO potential energy surface and by performing a variety of structural optimizations of the H(2)CO molecule embedded in external, differently oriented dipole electric fields, and also by invoking a simple analytical force-field model.  相似文献   

18.
We directly observe the interaction between 1-butyl-3-methylimidazolium (bmim) or 1-butyl-2,3-dimethylimidazolium (bm(2)im) and the solute, ethyl acrylate (EA), which is the popular dienophile in the Diels-Alder reaction and an H-bonding acceptor, by using specially designed electrospray mass spectrometry. In imidazolium ionic liquids, cation-anion interactions are controlled by selecting the appropriate anion, and the naked C(2)-H of imidazolium, which loosely interacts with its counterion, can readily interact with an H-bonding acceptable solute. The ion-counterion (solvent-solvent) interaction affects the ion-solute (solvent-solute) interaction. This relation is one of the key criteria for selecting the cation-anion combination in tailoring ILs.  相似文献   

19.
Critical micelle concentration (CMC) of sodium dodecyl sulfate (SDS), an anionic surfactant, has been investigated in aqueous solutions of a variety of room temperature ionic liquids (RTILs): 1,3-dimethylimidazolium iodide (Me2IM-I, 2), 1-butyl-3-methylimidazolium chloride (BMIM-Cl, 3), 1-hexyl-3-methylimidazolium chloride (HxMIM-Cl, 4), 1-methyl-3-octylimidazolium chloride (MOIM-Cl), 5, and 1-methyl-3-octylimidazolium tetrafluoroborate (MOIM-BF4, 6). The CMC of SDS is shown to correlate with the nature of the alkyl groups in the RTILs; SDS showed appreciably higher CMCs in presence of ionic liquids 2 and 3, whereas in the presence of ionic liquids 4, 5, and 6 much smaller CMCs were observed. The nature of the gigenions, Cl- or BF4-, has no noticeable effect on the observed CMC values.  相似文献   

20.
The paper reports on the chemical functionalization of glassy carbon electrodes with 4-bromobenzene (4-BBDT) and 4-(4'-nitrophenylazo)benzene diazonium tetrafluoroborate (4-NAB) salts in ionic liquids. The reaction was carried out at room temperature in air without any external electrical bias in either hydrophobic (1-butyl-3-methylimidazolium hexafluorophosphate) or hydrophilic (1-butyl-3-methylimidazolium methyl sulfate) ionic liquids. The resulting surfaces were characterized using X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and electrochemical measurements. Electrochemical reduction of the terminal nitro groups allowed the determination of surface coverage and formation of an amine-terminated carbon surfaces. The results were compared to glassy carbon chemically modified in an aqueous solution in the presence of 1% sodium dodecyl sulfate (SDS) with the same diazonium salt. Furthermore, Raman spectroscopy coupled with electrochemical measurements allowed to distinguish between the reduction of -NO2 to -NH2 group and the -N=N- to -NH-NH- bond.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号