首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report on the complexation between charged-neutral block copolymers and oppositely charged surfactants studied by small-angle neutron scattering. Two block copolymers/surfactant systems are investigated, poly(acrylicacid)-b-poly(acrylamide) with dodecyltrimethylammonium bromide and poly(trimethylammonium ethylacrylate methylsulfate)-b-poly(acrylamide) with sodium dodecyl sulfate. Two two systems are similar in terms of structure and molecular weight but have different electrostatic charges. The neutron-scattering data have been interpreted in terms of a model that assumes the formation of mixed polymer-surfactant aggregates, also called colloidal complexes. These complexes exhibit a core-shell microstructure, where the core is a dense coacervate microphase of micelles surrounded by neutral blocks. Here, we are taking advantage of the fact that the complexation results in finite-size aggregates to shed some light on the complexation mechanisms. In order to analyze quantitatively the neutron data, we develop two different approaches to derive the number of surfactant micelles per polymer in the mixed aggregates and the distributions of aggregation numbers. With these results, we show that the formation of the colloidal complex is in agreement with overcharging predictions. In both systems, the amount of polyelectrolytes needed to build the core-shell colloids always exceeds the number that would be necessary to compensate the charge of the micelles. For the two polymer-surfactant systems investigated, the overcharging ratios are 0.66+/-0.06 and 0.38+/-0.02.  相似文献   

2.
《Soft Materials》2013,11(2-3):71-84
Abstract

When polyelectrolyte‐neutral block copolymers are mixed in solutions to oppositely charged species (e.g., surfactant micelles, macromolecules, proteins, etc.), there is the formation of stable “supermicellar” aggregates combining both components. The resulting colloidal complexes exhibit a core‐shell structure, and the mechanism yielding to their formation is electrostatic self‐assembly. In this contribution, we report on the structural properties of “supermicellar” aggregates made from yttrium‐based inorganic nanoparticles (radius 2 nm) and polyelectrolyte‐neutral block copolymers in aqueous solutions. The yttrium hydroxyacetate particles were chosen as a model system for inorganic colloids, and also for their use in industrial applications as precursors for ceramic and opto‐electronic materials. The copolymers placed under scrutiny are the water‐soluble and asymmetric poly(sodium acrylate)‐b‐poly(acrylamide) diblocks. Using static and dynamical light‐scattering experiments, we demonstrate the analogy between surfactant micelles and nanoparticles in the complexation phenomenon with oppositely charged polymers. We also determine the sizes and the aggregation numbers of the hybrid organic–inorganic complexes. Several additional properties are discussed, such as the remarkable stability of the hybrid aggregates and the dependence of their sizes on the mixing conditions.  相似文献   

3.
Biodegradable nanoparticle flocculates for dry powder aerosol formulation   总被引:1,自引:0,他引:1  
Uncontrolled agglomeration presents a formidable encumbrance to nanoparticle formulation as a dry powder for inhalation therapy. Spray-drying and freeze-drying of nanosuspensions has demonstrated some success in creating dry powders composed of agglomerated nanoparticles with appropriate aerodynamic properties. These controlled drying processes, however, may require an undesirable amount of excipient to maintain an active therapeutic while generating dry powders and may not offer the desired control over agglomerate size and aerosolizability. As a potential alternative approach, a method for flocculating nanoparticles in solution followed by freeze-drying is reported. Biodegradable poly(DL-lactic-co-glycolic acid) nanoparticles were self-assembled into flocs via electrostatic interactions between nanoparticles coated with oppositely charged polyelectrolytes. The size of the nanoparticle flocs was readily controlled by manipulating the mixing ratio of charged nanoparticles. Freeze-drying the flocculated nanoparticles produced dry powders exhibiting low density (approximately 0.1 g/cm3), a weblike morphology, and desirable aerodynamic properties suited for dry powder aerosols.  相似文献   

4.
When polyelectrolyte-neutral block copolymers are mixed in aqueous solutions with oppositely charged species, stable complexes are found to form spontaneously. The mechanism is based on electrostatics and on the compensation between the opposite charges. Electrostatic complexes exhibit a core-shell microstructure. In the core, the polyelectrolyte blocks and the oppositely charged species are tightly bound and form a dense coacervate microphase. The shell is made of the neutral chains and surrounds the core. In this paper, we report on the structural and magnetic properties of such complexes made from 6.3 nm diameter superparamagnetic nanoparticles (maghemite gamma-Fe(2)O(3)) and cationic-neutral copolymers. The copolymers investigated are poly(trimethylammonium ethylacrylate methyl sulfate)-b-poly(acrylamide), with molecular weights 5000-b-30000 g mol(-)(1) and 110000-b-30000 g mol(-)(1). The mixed copolymer-nanoparticle aggregates were characterized by a combination of light scattering and cryo-transmission electron microscopy. Their hydrodynamic diameters were found in the range 70-150 nm, and their aggregation numbers (number of nanoparticles per aggregate) from tens to hundreds. In addition, Magnetic Resonance Spin-Echo measurements show that the complexes have a better contrast in Magnetic Resonance Imaging than single nanoparticles and that these complexes could be used for biomedical applications.  相似文献   

5.
Ag/CdTe nanocomposite was prepared via self-organization process by electrostatic interaction between positively charged CdTe quantum dots and negatively charged Ag nanoparticles and examined with respect to their optical properties. The positively charged CdTe quantum dots and negatively charged Ag nanoparticles were synthesized separately by modifying nanoparticles surface with cationic and anionic thiol compounds, respectively. The result showed that the mixing ratio of Ag nanoparticles to CdTe quantum dots is an important parameter for controlling resulting composites. The resulting solution is optically transparent if one component is in excess. Photoluminescence of CdTe quantum dots undergoes considerably quenching if CdTe nanocrystals are in excess and SERS spectra of BVPP absorbed on Ag colloid became stronger if Ag nanoparticles are in excess. Nevertheless, while the ratio is approximately 1, micrometer-sized solid composite is obtained with the elapse of 1h after mixing. SERS spectra for solid composite only exhibit the signals of the CdS nanocrystal which reflected that prolonged refluxing during the synthesis leads to a partial hydrolysis of the thiols and to the incorporation of the sulfur from the thiol molecules into the the growing nanoparticles to form mixed CdTe(S) nanocrystal, similar to CdTe/CdS core/shell structure. From the results, we conclude that optical properties of Ag/CdTe are dependent on the mixing ratio of both nanoparticles.  相似文献   

6.
We report the presence of a correlation between the bulk and interfacial properties of electrostatic coacervate complexes. Complexes were obtained by co-assembly between cationic-neutral diblocks and oppositely charged surfactant micelles or 7 nm cerium oxide nanoparticles. Light scattering and reflectometry measurements revealed that the hybrid nanoparticle aggregates were more stable through both dilution and rinsing (from either a polystyrene or a silica surface) than their surfactant counterparts. These findings were attributed to a marked difference in critical association concentration between the two systems and to the frozen state of the hybrid structures.  相似文献   

7.
Microporous nanocomposites of Pd and Au nanoparticles were generated by utilizing electrostatic interaction between oppositely charged Au nanoparticles coated with carboxylate groups (Au-COO-) and spherical aggregates of Pd nanoparticles (Pd- NH3+) with a mean diameter of 80+/-20 nm stabilized and cross linked by octa(aminopropyl)silsesquioxane octahydrochloride (POSS-NH3+). Amide bonds were formed between the reactive ion couples that are well defined in the Pd-Au colloidal nanocomposites during a subsequent chemical reaction to generate more stable nanocomposites with improved chemical and physical properties.  相似文献   

8.
Polyelectrolyte (PE) complexes (PECs) between long polycation poly(methacryloyloxyethyl dimethylbenzylammonium chloride) and short polyanion polystyrene sulfonic acid adsorbed onto mica were studied by atomic force microscopy. If one component is taken in excess, then a rapid coupling of the oppositely charged polyions first leads to the formation of nonequilibrium structures when collapsed PEC particles coexist with unreacted PEs molecules. The equilibrium PEC particles possess micelle-like core-shell morphology if the short polyion is taken in excess. When long PE is given in excess, equilibrium PECs are stabilized by wrapping the long polyion around hydrophobic segments of the PEC. We propose that transformations of initially formed nonequilibrium aggregates proceed through slow reactions (addition or/and substitution) of primary complexes with unreacted PEs chains, which finally leads to equilibrium PECs with optimized morphology. As expected, the mixing of oppositely charged PEs in a near-stoichiometric ratio leads to highly aggregated water-insoluble PECs.  相似文献   

9.
Using light scattering and cryogenic transmission electron microscopy, we show that highly aggregated polyelectrolyte complexes (HAPECs) composed of poly([4-(2-aminoethylthio)butylene] hydrochloride)49-block-poly(ethylene oxide)212 and poly(acrylic acid) (PAA) of varying lengths (140, 160, and 2000 monomeric units) are metastable or unstable if the method of preparation is direct mixing of two solutions containing the oppositely charged components. The stability of the resulting HAPECs decreases with decreasing neutral-block content and with increasing deviation from 1:1 mixing (expressed in number of chargeable groups) of the oppositely charged polyelectrolytes, most probably for electrostatic reasons. The difference between the metastable and stable states, obtained with pH titrations, increases with increasing PAA length and increasing pH mismatch between the two solutions with the oppositely charged components.  相似文献   

10.
This work demonstrates luminescence resonance energy transfer (LRET) sensors based on lanthanide‐doped nanoparticles as donors (D) and gold nanoparticles as acceptors (A), combined through electrostatic interactions between the oppositely charged nanoparticles. Negatively charged lanthanide‐doped nanoparticles, YVO4:Eu and LaPO4:Ce,Tb, with high luminescence quantum yield and good water‐solubility, are synthesized through a polymer‐assisted hydrothermal method. Positively charged polyhedral and spherical gold nanoparticles exhibit surface plasmon resonance (SPR) bands centered at 623 and 535 nm, respectively. These bands overlap well with the emission of the Eu3+ and Tb3+ ions within the lanthanide nanoparticles. Herein, the gold nanoparticles are synthesized through a seed‐mediated cetyltrimethylammonium bromide (CTAB)‐assisted method. The assemblies of the oppositely charged donors and acceptors are developed into LRET‐based sensors exhibiting a donor quenching efficiency close to 100 %.  相似文献   

11.
When oppositely charged polyelectrolytes are mixed in water, attraction between oppositely charged groups may lead to the formation of polyelectrolyte complexes (associative phase separation, complex coacervation, interpolymer complexes). Theory is presented to describe the electrostatic free energy change when ionizable (annealed) (macro-)molecules form a macroscopic polyelectrolyte complex. The electrostatic free energy includes an electric term as well as a chemical term that is related to the dissociation of the ionic groups in the polymer. An example calculation for complexation of polyacid with polybase uses a cylindrical diffuse double layer model for free polymer in solution and electroneutrality within the complex and calculates the free energy of the system when the polymer is in solution or in a polyelectrolyte complex. Combined with a term for the nonelectrostatic free energy change upon complexation, a theoretical stability diagram is constructed that relates pH, salt concentration, and mixing ratio, which is in qualitative agreement with an experimental diagram obtained by Bungenberg de Jong (1949) for complex coacervation of arabic gum and gelatin. The theory furthermore explains the increased tendency toward phase separation when the polymer becomes more strongly charged and suggests that complexation of polyacid or polybase with zwitterionic polymer (e.g., protein) of the same charge sign (at the "wrong side" of the iso-electric point) may be due (in part) to an induced charge reversal of the protein.  相似文献   

12.
Layer-by-layer growth of attractive binary colloidal particles   总被引:1,自引:0,他引:1  
We investigate the two-dimensional (2D) colloidal structures formed by oppositely charged polystyrene monolayers grown layer-by-layer, where the electrostatic forces are recruited to assist in the packing of the layers. Our results show a transition through several 2D-superlattices to more close-packed structures with increasing ionic strength. The observed geometrical packing constraints of the 2D-superlattice structures agree well with the estimated Debye screening length of the electric double layer. By tuning interaction forces between charged colloids, electrostatic interactions could enhance the template-directed self-assembly process to achieve more complex and diverse structures.  相似文献   

13.
We performed molecular dynamics simulations of multilayer assemblies of flexible polyelectrolytes and nanoparticles. The film was constructed by sequential adsorption of oppositely charged polymers and nanoparticles in layer-by-layer fashion from dilute solutions. We have studied multilayer films assembled from oppositely charged polyelectrolytes, oppositely charged nanoparticles, and mixed films containing both nanoparticles and polyelectrolytes. For all studied systems, the multilayer assembly proceeds through surface overcharging after completion of each deposition step. There is almost linear growth in the surface coverage and film thickness. The multilayer films assembled from nanoparticles show better layer stratification but at the same time have higher film roughness than those assembled from flexible polyelectrolytes.  相似文献   

14.
Rheology and phase separation were investigated for aqueous mixtures of two oppositely charged hydrophobically modified polyelectrolytes. The typical phase separation, normally seen for oppositely charged polymer mixtures, is dramatically reduced by the presence of hydrophobic modification, and phase separation is only detected close to the point of charge neutralization. While the two polyelectrolytes separately can give high viscosities and a gel-like behavior, a pronounced maximum in viscosity and storage modulus with the mixing ratio of the polyelectrolytes is observed; the maximum is located between the points of charge and hydrophobe stoichiometry and reflects a combination of hydrophobic and electrostatic association. Lowering the charge density of the anionic polymer leads to a strengthened association at first, but at lower charge densities there is a weakened association due to the onset of phase separation. The strength of the electrostatic interaction was modified by adding salt. Increased ionic strength can lead to phase separation and to increased or decreased viscosity depending on the polyelectrolyte mixing ratio.  相似文献   

15.
A novel method is proposed to create asymmetrically nanoparticle-supported, monodisperse composite dumbbells. The method consists of the three steps of double soap-free emulsion polymerizations before and after a heterocoagulation. In the first step, soap-free emulsion polymerization was conducted to cover silica cores with cross-linked poly(methyl methacrylate) (PMMA) shells. Then, positively or negatively charged silica nanoparticles were heterocoagulated with the silica-PMMA core-shell particles. In the heterocoagulations, the nanoparticles surface-modified with a cationic silane coupling agent, 3-aminopropyltriethoxysilane, were used as the positively charged ones, and silica nanoparticles without any treatment were used as the negatively charged ones. In the third step, soap-free polymerizations at different pH values were performed to protrude a polystyrene (PSt) bulge from the core-shell particles supporting the charged silica nanoparticles. In the polymerization, the core-shell particles heterocoagulated with the positively charged silica nanoparticles were aggregated in an acidic condition whereas the silica nanoparticles supported on the core-shell particles were dissolved in a basic condition. For the negatively charged silica nanoparticle, a PSt bulge was successfully protruded from the core-shell particle in acidic and neutral conditions without aggregation of the core-shell particles. The protrusion of the PSt bulge became distinctive when the number of heterocoagulated silica nanoparticles per core-shell particle was increased. Additional heterocoagulation experiments, in which positively or negatively charged magnetite nanoparticles were mixed with the asymmetrically nanoparticle-supported composite dumbbells, confirmed direct exposure of silica nanoparticles to the outer solvent phase.  相似文献   

16.
We explore the generality of nanoparticle haloing as a novel colloidal stabilization mechanism in binary mixtures of silica microspheres and polystyrene nanoparticles. By selectively tuning their electrostatic interactions, both the initial microsphere stability and the role of nanoparticle additions are varied. Adsorption isotherm and zeta potential measurements indicate that highly charged nanoparticles exhibit a weak (haloing) association with negligibly charged microspheres, whereas they either strongly adsorb onto oppositely charged or are repelled by like-charged microsphere surfaces, respectively. Bulk sedimentation and confocal scanning fluorescence microscopy reveal that important differences in system stability emerge depending on whether the added nanoparticles serve as haloing, bridging, or depletant species.  相似文献   

17.
We report on the electrostatic complexation between polyelectrolyte-neutral copolymers and oppositely charged 6-nm crystalline nanoparticles. For two different dispersions of oxide nanoparticles, the electrostatic complexation gives rise to the formation of stable nanoparticle clusters in the range 20-100 nm. It is found that inside the clusters, the particles are "pasted" together by the polyelectrolyte blocks adsorbed on their surface. Cryo-transmission electronic microscopy allows visualization of the clusters and determination of the probability distribution functions in size and in aggregation number. The comparison between light scattering and cryo-microscopy results suggests the existence of a polymer brush around the clusters.  相似文献   

18.
Recent experiments have shown that salt solutions containing surfaces with two oppositely charged species show stable, possibly equilibrium, structures with finite domain sizes. The short-range interactions between the two species would normally result in phase separation that is driven by the line tension with macroscopically large domains of each species. In this paper, we show that, when at least one of the charged species is mobile, finite domains can occur in equilibrium. The domain size is determined by a competition of the electrostatic free energy that promotes charge mixing and small domains, with the line tension that promotes macroscopic phase separation. We calculate the equilibrium patch size as a function of the surface charge and the concentration of dissolved monovalent salts in the bulk phase. An important finding is the prediction of a first-order transition from finite patches to macroscopic phase separation of the two charge species as the salt concentration is increased.  相似文献   

19.
We study the phase behavior of mixtures of oppositely charged nanoparticles, both theoretically and experimentally. As an experimental model system we consider mixtures of lysozyme and lysozyme that has been chemically modified in such a way that its charge is nearly equal in magnitude but opposite in sign to that of unmodified lysozyme. We observe reversible macroscopic phase separation that is sensitive not only to protein concentration and ionic strength, but also to temperature. We introduce a heterogeneous Poisson-Boltzmann cell model that generally applies to mixtures of oppositely charged nanoparticles. To account for the phase behavior of our experimental model system, in addition to steric and electrostatic interactions, we need to include a temperature-dependent short-ranged interaction between the lysozyme molecules, the exact origin of which is unknown. The strength and temperature dependence of the short-ranged attraction is found to be of the same order of magnitude as that between unmodified lysozyme molecules. The presence of a rather strong short-ranged attraction in our model system precludes the formation of colloidal liquid phases (or complex coacervates) such as those typically found in mixtures of globular protein molecules and oppositely charged polyelectrolytes.  相似文献   

20.
以丙烯酸异丁酯(IBA)、甲基丙烯酸二甲氨乙酯(DMAEMA)、丙烯酸羟乙酯(HEA)作为聚合单体,利用种子微乳液聚合制备了一种具有核-壳结构的聚合物纳米胶粒P(DMAEMA-co-IBA)/P(IBA-co-HEA);采用红外光谱仪、动态激光光散射仪、透射电镜分析了所得胶粒的结构和形貌;将叶酸成功嵌入聚合物胶粒,得到直径约293nm的球形载药胶粒,利用药物体外释放测定了药物运载性能.结果表明,所制备的共聚物纳米胶粒呈球形,直径约275nm,粒径分布较窄,并具有核-壳结构;其对药物具有缓释性和pH响应性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号