首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We investigated the mechanisms involved in the retention of various peptides on a stationary phase embedded with a quaternary ammonium group (BS C23), by high-performance liquid chromatography. This was compared with peptide retention on a conventional reversed-phase C18 (RP C18) column under isocratic conditions, to understand better the various mechanisms involved. Chromatographic characterization of the two stationary phases with “model” compounds showed that BS C23 is less hydrophobic than RP C18 and induces electrostatic interaction (attraction or repulsion) with ionized compounds. If reversed-phase partitioning was the predominant retention phenomenon, for both stationary phases, the retention mechanisms in BS C23 provided different selectivity to that of RP C18. Electrostatic attraction or repulsion was clearly observed between peptides and the permanent positively charged group embedded in BS C23 depending on the pH. For most of the peptides, a weak anion-exchange mechanism was observed on the quaternary ammonium-embedded stationary phase if mobile phases at neutral pH and low ionic strengths were employed.  相似文献   

2.
通过在硅胶表面同时化学键合十八烷基和环氧基团,再用小分子叔胺进行环氧开环,制备得到表面带正电荷的反相模式固定相.该方法避免了反相模式固定相必要的封尾步骤,可在碱性样品分离中起到电荷屏蔽作用,消除因静电吸附而导致的峰拖尾现象,同时有利于提高固定相的耐水能力.该固定相表现出反相和亲水作用的双重保留机理,具有良好的运行稳定性...  相似文献   

3.
Summary A new resorcarene derivatives, ethylhexylresorcarene, was synthesized and used as stationary phase in opentubular (capillary) columns. It was combined with heptakis(2,6-di-O-pentyl-3-O-trifluoroacetyl)-β-CD and coated on fused-silica capillary tubes. By studying the chromatographic properties of the mixed stationary phase and its selectivity for different isomers, as well as comparing with the resorcarene and the CD used as individual stationary phases, a synergistic effect was observed on the mixed stationary phase.  相似文献   

4.
The performance of a polymeric stationary phase with reversed-phase properties (ET-RP1) was evaluated for LC separations at elevated temperature. The most significant observation was that the reduced plate height (h) decreased from 3.4 at 25 °C (optimal flow 0.5 mL/min) to 2.4 at 150 °C (optimal flow 2.5 mL/min) which is comparable to the efficiency obtained with silica-based reversed-phase columns of 4.6 mm ID operated at 0.8 mL/min. The phase showed no deterioration after long use at 150 °C within the pH range 1–9. Catalytic activity originating from the stationary phase material, e.g. as experienced on zirconium columns operated at elevated temperature, was absent. The performance of ET-RP1 is illustrated with the analysis of some pharmaceutical samples by LC and LC–MS. Operation at elevated temperature also allows to reduce the amount of organic modifier or to replace acetonitrile and methanol by the biodegradable ethanol.  相似文献   

5.
Separation of twelve enkephalins was investigated on a quaternary ammonium-embedded stationary phase (Stability BS-C23). Variation of buffer pH of the mobile phase highlighted the complex relationship between repulsive/attractive electrostatic interactions and the reversed-phase partitioning mechanism. The effect of three different anions employed as additives (phosphate, chloride and perchlorate) was examined at various concentrations and two pH values (acidic and neutral). At pH 2.5, an increase in the anion eluent concentration resulted in a higher retention factors of positively charged enkephalins. This effect was more pronounced when perchlorate ions were added to the mobile phase rather than phosphate and chloride ions, due to chaotropic and ion-pairing effects. In contrast, at pH 7.5, retention factors of negatively charged enkephalins decreased when these salts were added, due to an anion-exchange mechanism. Perchlorate caused a sharper decrease than chloride and phosphate anions did. The results presented here provide insight into the possible adjustment of retention and separation of peptides on a mixed-mode stationary phase (BS-C23) by a careful control of the buffer pH, the nature and concentration of anions, added to the buffer, and organic modifier content.  相似文献   

6.
New stationary phases for hydrophilic interaction liquid chromatography (HILIC) were synthesized by covalently attaching native cyclofructan 6 (CF6) to silica gel. The chromatographic characteristics of the new stationary phases were evaluated and compared to three different types of commercial HILIC columns. The CF6 columns produced considerably different retention and selectivity patterns for various classes of polar analytes, including nucleic acid compounds, xanthines, β-blockers, salicylic acid and its derivatives, and maltooligosaccharides. Univariate optimization approaches were examined including organic modifier (acetonitrile) contents and buffer pH and salt concentration. The thermodynamic characteristic of the CF6 stationary phase was investigated by considering the column temperature effect on retention and utilizing van't Hoff plots. CF6 based stationary phases appear to have exceptionally broad applicability for HILIC mode separations.  相似文献   

7.
8.
Summary Silica beads of 6-μm average diameter were silanized with methylvinyldiethoxysilane and then subjected to encapsulation with poly(methylvinylsiloxane). The resulting product is a new stationary phase for reversed-phase high performance liquid chromatography (RP-HPLC) which has superior ability for the separation of polar, non-polar and basic compounds. The chromatographic peaks are symmetric. Its stability has been studied; after continuous use for three months the carbon content and chromatographic behaviour of the phase were unchanged. on to the silica surface to given an uniform organic film. Material prepared in this way has both good chromatographic behaviour and superior selectivity. Because contact of the silica matrix with the mobile phase is avoided, the alkali-resisting ability of the stationary phase is increased. The non-specific adsorption of alkaline solutes on to the silica surface is also avoided because of the complete coverage of surface silanol groups. Reports of stationary phases encapsulated with polystyrene [6], polybutadiene [I] and octadecylsiloxane polymers have recently appeared in the literature [3]. In this paper we report the encapsulation of poly-(methylvinylsiloxane) (analogous to the phase SE-31 often used in GC) on to a silica matrix previously modified with methylvinyldiethoxysilane. The resulting phase has superior performance in reversed-phase HPLC.  相似文献   

9.
Summary The theory of the evaporation of the liquid stationary phase is elaborated and experimentally verified. On the basis of this theory the role played by the losses in the amount of liquid phase present is quantitatively determined. General techniques are examined which minimize the losses; these techniques are based on saturating the incoming carrier gas with liquid phase vapours and raising the pressure of the carrier gas in the column, e.g. by connecting a capillary to the column outlet in order to offer resistance to the gas flow. The application of these techniques ensures stable performance of the gas chromatographic columns using a volatile liquid phase.  相似文献   

10.
Countercurrent chromatography (CCC) is a separation technique using a biphasic liquid system and centrifugal forces to maintain a support-free liquid stationary phase. Either one of the two phases can be the liquid stationary phase. It is even possible to switch the phase role during the separation. The dual-mode method is revisited recalling its theoretical background. The multi-dual mode (MDM) CCC method was introduced to enhance the resolution power of a CCC column. The theoretical study of the MDM method is validated by modeling the separation of two solutes. The basic hypothesis is that the forward step (partial classical elution) is followed by a backward step that returns the less retained solute to the column head. The equations show that the most important parameter to maximize resolution is not the number of MDM steps but the total volume of liquid phases used to elute the solutes. The model is validated calculating correctly the peak position of previously published MDM experiments.  相似文献   

11.
Application of mono (6A-N-ethylenediamine-6A-deoxy) perphenylcarbamoylated β-cyclodextrin (β-CD) bonded stationary phase (CSP) in micro-high performance liquid chromatography (micro-HPLC) and pressurized capillary electrochromatography (p-CEC) was firstly presented. A series of racemic α-amidophosphonates were resolved in reversed- and normal-phase modes on this CSP. The investigated chromatographic parameters include retention factor (k′), separation factor (α) and resolution (Rs) of solutes. In addition, the structural variation of the solutes and the experimental factors affecting chiral separations have been examined, including the percentage of alcohol modifier, the linear velocity (u) of the mobile phase, electrical field strength, etc. Baseline separation was achieved for most of the entities. Hydrophobic interaction, steric effect and π-π interaction contribute to the possible mechanism. Comparative results indicate that higher Rs value up to 3.1 was found in micro-HPLC, higher efficiency up to 29,970 in p-CEC.  相似文献   

12.
以聚(乙烯-alt-马来酸)的苯乙胺衍生物与聚烯丙基胺盐酸盐为原料,通过层层自组装技术(LBL)在色谱硅胶表面交替沉积得到聚电解质多层膜高效液相色谱(HPLC)固定相;利用紫外光谱、红外光谱和元素分析研究了HPLC固定相的结构和组成.结果表明,聚电解质多层膜HPLC固定相被成功构筑在硅胶颗粒表面;制备的多层膜固定相可方便地用于6种芳香烃类及4种烷基苯类物质的分离分析.本文的研究结果说明LBL技术在制备HPLC固定相方面具有一定的应用价值.  相似文献   

13.
在反相以及正相争件下,利用自制的涂敷型纤维素-三(3,5-二甲基苯基氨基甲酸酯)手性固定相直接拆分了外消旋雷诺嗪,并考察了不同流动相对手性拆分的影响,特别是醇类物质对拆分影响。结果表明,醇的立体结构、极性对雷诺嗪的手性拆分均有影响。实验结果显示无论在正相条件下还是在反相条件下,涂敷型纤维素-三(3,5-二甲基苯基氨基甲酸酯)手性固定相均可以很好的拆分外消旋体雷诺嗪。  相似文献   

14.
Retention behavior of polycyclic aromatic hydrocarbons (PAHs) on an acridine derivative stationary phase was examined in microcolumn liquid chromatography. 3,6-Bis(dimethylamino)-10-dodecylacridinium was electrostatically introduced into a cation-exchanger, and its selectivity was compared with that of octadecylsilyl-bonded silica gel. The former stationary phase provided smaller retention for non-planar PAHs than that achieved by the latter stationary phase. The results suggest that interaction between PAHs and the acridinyl ring dominates the retention of PAHs, and preferential retention of planar PAHs is attributed to the fact that they have more chance to interact with the acridinyl ring of the stationary phase than non-planar PAHs.  相似文献   

15.
A new type of high performance liquid chromatography (HPLC) stationary phase was prepared, and its chromatographic properties were evaluated. The sorbent was composed of metallacarborane covalently bound to silica. Because of the chemical structure of the immobilized metallacarborane, the synthesized stationary phase was able to interact with nonpolar analytes via hydrophobic interactions. The chromatographic behavior of several low-molecular-weight hydrocarbons on the sorbent under typical reversed-phase conditions was compared with octadecyl-, sulfo phenyl- and aminopropyl-modified silica stationary phases. Moreover, as a consequence of the synthetic protocol employed, the immobilization of the metallacarborane led to the development of a zwitterionic chemically bonded phase, which demonstrated excellent resistance to "phase collapse" in a 100% aqueous environment. Finally, preliminary experiments indicated that the new stationary phase has the potential for utilization in hydrophilic interaction chromatography (HILIC) mode for the separation of polar compounds.  相似文献   

16.
Sun M  Feng J  Liu S  Xiong C  Liu X  Jiang S 《Journal of chromatography. A》2011,1218(24):3743-3749
A novel multi-interaction stationary phase based on 4,4'-dipyridine modified silica was synthesized and characterized, by infrared spectra, X-ray photoelectron spectroscopy and elemental analysis. Mechanism involved in the chromatographic separation is the multi-interaction including π-π, hydrophobic, hydrogen-bonding, electrostatic and anion-exchange interactions. Based on these interactions, polycyclic aromatic hydrocarbons and phenols were successfully separated respectively in reversed-phase chromatography; inorganic and organic anions were also separated individually in anion-exchange chromatography by using the same column. Furthermore, the simultaneous separation of neutral organics, inorganic and organic anions was obtained on this stationary phase with the appropriate mobile phase. Therefore, such stationary phase has the characteristics of multi-interaction mechanism and multi-modal separation, and has potential application on complex samples.  相似文献   

17.
介绍了含极性基团硅质高效液相色谱固定相的研究进展,对反相固定相的合成、极性基团作用机理和色谱性质方面作了评述,对手性分离固定相和高效离子色谱固定相方面的进展也作了简单综述。  相似文献   

18.
Summary High performance liquid chromatography was used to separate Cu2+, Ni2+, and Zn2+ ions. A column packed with a -diketone bonded phase on silica gel and a mobile phase composed of trifluoroacetylacetone in acetone was used for the separation. After post-column reaction with a color-forming reagent, the metals were detected by absorption in the visible region.Currently assigned to 1155th Technical Operations Squadron, McClellan Air Force Base, California, 95652, USA  相似文献   

19.
利用混合固定相色谱柱(Optimix SCX/C8)分析了8种三嗪类化合物,在0.01 mol/L乙酸钠缓冲溶液(pH4.2)-CH3CN(75:25,V/V)等度洗脱的流动相条件下,实现了利用液相色谱方法分离同分异构体敌草净和西草净,并对比了相同色谱条件下8种目标物在C8色谱柱上的分离效果;比较了PEP和C18固相萃...  相似文献   

20.
New zwitterionic stationary phases were synthesized by covalently bonding 3-P,P-diphenylphosphonium-propylsulfonate to silica gel. The resulting materials possess both a negatively charged sulfonate group and a positively charged quaternary phosphonium group, which means that there is no net charge over a wide pH range. The retention mechanism and chromatographic behavior of polar solutes under HILIC conditions were studied on these zwitterionic phases. Compared to the commercial ZIC-HILIC column and a bare silica gel stationary phase, the newly synthesized zwitterionic stationary phases provided greater retention, higher peak efficiency and better peak symmetry in the HILIC mode. The analytes examined included: β-blockers, nucleic acid bases and nucleosides, salicylic acid and its analogues, and water soluble vitamins. Factors, such as the type of organic modifiers, solvent composition, pH and the buffer concentration of the mobile phase, have been considered as potential variables for controlling the chromatographic retention of polar analytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号