首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 538 毫秒
1.
《Electroanalysis》2005,17(24):2260-2265
A new Cu(II) ion‐selective PVC membrane sensor based on 6‐methyl‐4‐(1‐phenylmethylidene)amino‐3‐thioxo‐1,2,4‐triazin‐5‐one (MATTO) as an excellent sensing material was developed. The electrode exhibits a Nernstian slope of 29.2±0.4 mV per decade over a very wide concentration range between 1.0×10?1 and 1.0×10?6 M, with a detection limit of 4.8×10?7 M (30.5 ng/mL). The sensor possesses the advantages of short conditioning time, fast response time (<10 s), and especially, very good selectivity towards transition and heavy metal, and some mono, di and trivalent cations. The proposed electrode was successfully applied to the determination of copper in wastewater of copper electroplating samples and as an indicator electrode in potentiometric titration of Cu(II) ions with EDTA.  相似文献   

2.
《Electroanalysis》2003,15(19):1561-1565
A highly selective membrane electrode for the determination of ultratrace amounts of lead was prepared. The PVC membrane electrode based on 2‐(2‐ethanoloxymethyl)‐1‐hydroxy‐9,10‐anthraquinone (AQ), directly coated on graphite, exhibits a good Nernstian response for Pb(II) ions over a very wide concentration range (1.0×10?7–1.0×10?2 M) with a limit of detection of 8.0×10?8 M. It has a fast response time of ca. 10 s and can be used over a period 2 months with good reproducibility (SD=±0.2 mV). The electrode revealed a very good selectivity respect to common alkali, alkaline earth, transition and heavy metal ions and could be used in the pH range of 3.5–6.8. It was used as an indicator electrode in potentiometric titration of lead ions with chromate and oxalate, and in indirect determination of lead in spring water samples.  相似文献   

3.
《Analytical letters》2012,45(2):284-297
Abstract

4-(2-Thiazolylazo)resorcinol (TR) was used as a new compound to play the role of an excellent ion carrier in the fabrication of an Er(III) membrane electrode. The electrode shows a very good selectivity toward Er(III) ions over a wide variety of cations, including alkali, alkaline earth, transition, and heavy-metal ions. The proposed sensor exhibits a Nernstian behavior (with slope of 19.6 ± 0.6 mV per decade) over a wide concentration range (1.0 × 10?6 to 1.0 × 10?2 M). The detection limit of the sensor is 6.6 × 10?7 M. It has a very short response time, in the whole concentration range (~10 s), and can be used for at least 12 weeks in the pH range of 2.8–9.3. The proposed sensor was successfully applied as an indicator electrode for the potentiometric titration of a Er(III) solution, with EDTA. It was also successfully applied to the F? ion determination in some mouthwashing solutions.  相似文献   

4.
A new triiodide ion‐selective electrode based on a charge‐transfer complex of iodine with ditertbutyl‐dicyclohexyl‐18‐crown‐6 (t‐Bu)2DC18C6 as membrane carrier was prepared. The electrode has a linear dynamic range from 6.3 × 10?3‐5 × 10?6 with a Nernstian response of 58.6 ± 1 mV decade?1 and a detection limit of 1.3 × 10?6 M. The response time of the sensor was 25 s. The membrane could be used for two months without any divergence in potentials. The electrode exhibits an anti‐Hofmeistetr selectivity sequence with a preference for triiodide at pH 2.0‐10.0. The response mechanism of the electrode was investigated by Uv‐Vis spectroscopic technique. The electrode can be used for the determination of ascorbic acid in orange juice.  相似文献   

5.
A PVC membrane electrode for Hg(II) ions, based on a new cone shaped calix[4]arene (L) as a suitable ionophore was constructed. The sensor exhibits a linear dynamic in the range of 1.0 × 10?6–1.0 × 10?1 M, with a Nernstian slope of 29.4 ± 0.4 mV decade?1, and a detection limit of 4.0 × 10?7 M. The response time is quick (less than 10 s), it can be used in the pH range of 1.5–4, and the electrode response and selectivity remained almost unchanged for about 2 months. The sensor revealed comparatively good selectivity with respect to most alkali, alkaline earth, and some transition and heavy metal ions. It was successfully employed as an indicator electrode in the potentiometric titration of Hg2+ ions with potassium iodide, and the direct determination of mercury content of amalgam alloy and water samples.  相似文献   

6.
《Electroanalysis》2006,18(11):1075-1080
The voltammetric behavior of uric acid (UA) has been studied at a multiwalled carbon nanotube‐ionic liquid (i.e., 1‐butyl‐3‐methylimidazolium hexafluorophosphate, BMIMPF6) paste coated glassy carbon electrode (MWNTs‐BMIMPF6/GC). It is found that UA can effectively accumulate at this electrode and cause a sensitive anodic peak at about 0.49 V (vs. SCE) in pH 4.0 phosphate buffer solutions. Experimental parameters influencing the response of the electrode, such as solution pH and accumulation time, are optimized for uric acid determination. Under the optimum conditions, the anodic peak current is linear to UA concentration in the range of 1.0×10?8 M to 1.0×10?6 M and 2.0×10?6 M to 2.0×10?5 M. The detection limit is 5.0×10?9 M for 180 s accumulation on open circuit. The electrode can be regenerated by successively cycling in a blank solution for about 3 min and exhibits good reproducibility. A 1.0×10?6 M UA solution is measured for eight times using the same electrode regenerated after every determination, and the relative standard deviation (RSD) of the peak current is 3.2%. As for different electrodes fabricated by the same way the RSD (i.e., the electrode to electrode deviation) is 4.2%(n=9). This method has been applied to the determination of UA in human urine samples, and the recoveries are 99%–100.6%. In addition, comparison is made between MWNTs‐BMIMPF6/GC and MWNTs/GC. Results show that the MWNTs‐BMIMPF6/GC exhibits higher sensitivity, selectivity and ratio of peak current to background current.  相似文献   

7.
《Analytical letters》2012,45(1-3):241-257
Sibutramine (SBT+) ion-selective electrode (ISE) was constructed using poly(vinyl chloride) matrix membrane containing sibutramine–phosphotungstate (SBT–PTA) plasticized with dioctyl phthalate. The electrode exhibits Nernstian response of 59.54 mV/ concentration decade over the concentration range 1.0 × 10?5 to 1.0 × 10?2 M and detection limit of 7.94 × 10?6 M. The electrode was fully characterized in terms of its composition, response time, life span, pH, selectivity, and temperature and was then applied to the potentiometric determination of SBT in its pure bulk and pharmaceutical formulations under batch and flow injection conditions and for the in vitro testing of the dissolution profile of SBT capsules.  相似文献   

8.
A lead-selective solid-contact electrode was prepared on the basis of the misfit compound (PbS)1.18TiS2. The electrode exhibits the slope of the electrode function is -(26 ±1) mV/pc and provides the determination of 1 × 10-5-5 × 10-2 M lead in the pH range 2.75–5.0. High selectivity of the electrode for Ni2+, Co2+, Zn2+, Cu2+, Ag+, K+, Ba2+, and Sr2+ ions was demonstrated. The addition of graphite to the active phase of the membrane impaired the selectivity of the electrode. The electrode was used for the potentiometric indication of the titration end point in the determination of lead in copper alloys. Presented at the V All-Russian Conference with the Participation of CIS Countries on Electrochemical Methods of Analysis (EMA-99), Moscow, December 6–8, 1999.  相似文献   

9.
《Electroanalysis》2004,16(17):1413-1418
The in‐site functionalization of 4‐aminothiophenol (4‐ATP) self‐assembled monolayer on gold electrode at physiological pH yields a redox active monolayer of 4′‐mercapto‐N‐phenylquinone diimine (MNPD). The functionalized electrode exhibits excellent electrocatalytic responses towards dopamine (DA) and ascorbic acid (AA), reducing the overpotentials by about 0.22 V and 0.34 V, respectively, with greatly enhanced current responses. Due to its different catalytic activities toward DA and AA, the modified electrode resolves the overlapping voltammetric responses of DA and AA into two well‐defined voltammetric peaks by differential pulse voltammetry (DPV), which can be used for the simultaneous determination of these species in a mixture. The catalytic peak current obtained from DPV was linearly related to DA and AA concentration in the ranges of 5.0×10?6?1.25×10?4 M and 8.0×10?6?1.3×10?4 M with correlation coefficient of 0.999 and 0.998, respectively. The detective limits (3σ) for DA and AA were found to be 1.2×10?6 M and 2.4×10?6 M, respectively. The modified electrode shows good sensitivity, selectivity and stability, and has been applied to the determination of DA and AA simultaneously in samples with satisfactory results.  相似文献   

10.
In this work, for the first time, we introduce a highly selective and sensitive Be(II) microsensor. 4-nitrobenzo-9-crown-3-ether (NBCE) was used as a membrane-active component to prepare a Be(II)-selective polymeric membrane microelectrode. The electrode exhibits a Nernstian response toward Be(II) ions over a very wide concentration range (1.0 × 10−4–1.0 × 10−10 M), with a detection limit of 3.5 × 10−11 M (∼350 pg/L). In fact, the electrode presents a fast response time in the whole concentration range (6 s). The proposed microelectrode can be used for at least six weeks without any considerable divergence in the potentials. The proposed membrane sensor revealed a selectivity toward Be(II) ions over a wide variety of other metal ions including common alkali, alkaline-earth, and rare-earth ions. It could be used in the pH range of 3.0–11.5. The microelectrode was successfully used as an indicator electrode for the titration of 20 mL of 1.0 × 10−6 M Be2+ solution with 1.0 × 10−4 M of EDTA. It was also applied to the direct determination of beryllium ions in beryl and binary mixtures. The text was submitted by the authors in English.  相似文献   

11.
Studies on complex formation of tris(3‐(2‐hydroxybenzophenone)propyl)amine (THPA) with a number of metal ions in acetonitrile solution revealed the occurrence of a selective 1 : 1 complexation of the proposed ligand with Sn2+ ion. Consequently, THPA was used as a suitable neutral ionophore for the preparation of a polymeric membrane‐selective electrode. The electrode exhibits a Nernstian behavior with a slope of 29.4±0.3 mV per decade and a detection limit of 2.0×10?7 M. It also showed a good selectivity for Sn2+ ions in comparison with some of group A and B metal ions over a wide concentration range of 5.0×10?7–1.0×10?1 M. Improved selectivity was achieved compared to the best selectivity recently reported by other authors for tin(II). The electrode was successfully applied to the determination of Sn2+ ion in waste water and various canned products.  相似文献   

12.
《Analytical letters》2012,45(2):298-311
Abstract

A polyvinyl chloride (PVC) based membrane sensor for terbium ions was prepared by employing Hematoporphyrin (HP) as an ionophore. The sensor revealed a very good selectivity (expect for the Fe3+ion) with respect to common alkali, alkaline earth and heavy metal ions. The plasticized membrane electrode exhibits a Nernstian response for Tb3+ ions over a wide concentration range (1.0 × 10?6 ? 1.0 × 10?2 M) with a slope of 19.8±0.3 mV per decade and low detection limit of 7.4 × 10?7 M. The developed sensor was used in determination of F? in mouth wash preparation sample.  相似文献   

13.
An electrochemical method for the determination of tripelennamine hydrochloride (TPA) using cetyltrimethylammoniumbromide‐multiwalled carbon nanotubes modified glassy carbon electrode (MWCNT‐CTAB/GCE) was developed. Because of good electrical conductivity of MWCNT and catalytic behavior of CTAB, new electrode significantly enhances the sensitivity for the detection of TPA. Parameters such as amount of modifier suspension, scan rate, pH of measure solution, heterogeneous rate constant were investigated. The electrode exhibits a linear potential response in the range of 1.0×10?8 M to 3.0×10?6 M with a detection limit of 2.38× 10?9 M. The modified electrode was successfully applied to the determination of TPA in pharmaceutical and real samples.  相似文献   

14.
《Analytical letters》2012,45(14):2859-2871
ABSTRACT

A polymer coated graphite rod ion selective electrode for saccharin was constructed and evaluated for the determination of saccharin in artificial table top sweeteners. The polymer consists of a thin film of silsesquioxane 3-n-propylpyridinium chloride. The electrode response was based on the ion pair formed between saccharinate and the 3-n-propylpyridinium cation from the silsequioxane polymer. The electrode exhibits a Nernstian response for saccharin concentrations between 6.9×10-6 and 5.3×10-3 mol L-1 and a detection limit of 5.5×10-6 mol L-1. The electrode response for saccharin was fast (10-20 s) and the potential independent of pH in the range of 3 to 7. The selectivity coefficients K A, B pot for several anions usually present in commercial table top sweeteners were determined following the IUPAC recommendations. The potentiometric method with the ion selective electrode was validated by the HPLC reference method, through t8543226 determination of saccharin in commercial samples of table top sweeteners. The ion selective electrode is proved suitable for the routine quality control of table top sweeteners by potentiometry.  相似文献   

15.
《Electroanalysis》2006,18(16):1620-1626
A polyvinylchloride membrane sensor based on N,N′‐bis(salecylidene)‐1,2‐phenylenediamine (salophen) as membrane carrier was prepared and investigated as a Al3+‐selective electrode. The sensor exhibits a Nernstian response toward Al(III) over a wide concentration range (8.0×10?7–3.0×10?2 M), with a detection limit of 6.0×10?7 M. The potentiometric response of the sensor is independent of the pH of the test solution in the pH range 3.2–4.5. The electrode possesses advantages of very fast response and high selectivity for Al3+ in comparison with alkali, alkaline earth and some heavy metal ions. The sensor was used as an indicator electrode, in the potentiometric titration of aluminum ion and in determination of Al3+ contents in drug, water and waste water samples.  相似文献   

16.
《Electroanalysis》2005,17(10):895-900
A highly sensitive and selective membrane electrode with 9‐crown‐3 derivative (CD) as ionophore, potassium tetrakis‐(p‐chlorophenyl) borate as anionic additive (KTB), acetophenone (AP) as solvent mediator was prepared and investigated as a Be(II) sensor. The best performance was observed with the membrane having the percent ratio 30% PVC: 8% CD: 6% KTB: 56% Acetophenone. The poly(vinyl chloride) PVC membrane containing 9‐crown‐3 derivative (CD) directly coated on a graphite electrode, shows a Nernstian response for Be(II) ions over a very wide concentration range (1.0×10?1?1.0×10?7 M) with a detection limit of 8.0×10?8 M (ca. 0.72 ng/mL). It has a fast response time of ca. 20 s and can be used for at least 10 weeks without any major deviation in potential. The proposed sensor exhibits very good selectivity with respect to common alkali, alkaline earth, transition and heavy metal ions. The proposed sensor was used as end point indicator electrode in the titration of Be(II) ions with EDTA. It was also applied to determination of Be(II) in real sample.  相似文献   

17.
2,5-Dioxo-4-imidazolidinyl was used as an excellent sensing material in the preparation of a PVC membrane for a Ce(III)-selective sensor. The electrode shows a good selectivity for the Ce(III) ion with respect to most common cations including alkali, alkaline earth, transition, and heavy metal ions. The developed sensor exhibits a wide linear response with a slope of 19.6?±?0.3 mV per decade over the concentration range of 1.0?×?10?6 to 1.0?×?10?1 M, while the illustrated detection limit is 5.7?×?10?7 M of Ce(III) ions. Moreover, it is concluded that the sensor response is pH-independent in the range of 3.1–9.8. The applications of the recommended electrode include the determination of concentration of Ce(III) ions in soil and sediment samples, validation with CRM's, and the Ce(III) ion potentiometric titration with EDTA as an indicator electrode.  相似文献   

18.
A glassy carbon electrode coated with film of 4-tert-butyl-1-(ethoxycarbonylmethoxy)thiacalix[4]arene is designed for the determination of trace amounts of Ag+. Compared with bare glassy carbon electrode, the modified electrode can greatly improve the measuring sensitivity for Ag+. Under the optimum experimental conditions, the modified electrode in B-R buffer solution (pH 4.5) shows a linear voltammetric response in the range of 5.0 × 10−8–3.0 × 10−6 M with detection limit 1.0 × 10−8 M for Ag+. The high sensitivity, selectivity, and stability of modified electrode also demonstrate its practical application for a simple, rapid and economical determination of Ag+ in water samples.  相似文献   

19.
A novel dithio derivatized macrotricyclic compound (cryptand) has been synthesized using high dilution technique by condensation of diaminodibenzo18-crown-6 with 2, 2′dithiobenzoyl chloride. The compound was characterized by elemental analysis, 1H NMR, 13C NMR and FAB-MS. PVC membrane electrode based on this macrotricyclic compound showed good selectivity for Hg2+ ion with a wide linear range of 1.0 × 10?6 to 1.0 × 10?1 M and a lower detection limit of 5.0 × 10?6 M with a calibration slope of 30.2 mV decade?1. The electrode response was stable in pH range 3–6. Electrode showed good selectivity for Hg2+ over other interfering metal ions. The electrode was then applied to direct determination of Hg2+ in water samples.  相似文献   

20.
A PVC membrane containing 4-amino-6-methyl-1,2,4-triazin-3,5-dithione (AMTD) as a suitable ionophore, exhibits a Nernstian response for Cu2+ ions over a wide concentration range up to 1 × 10−1 and 1 × 10−6 M, with a detection limit of 7.5 × 10−7 M in the pH range 3.0–7.5. It has a fast response time (<15 s) and can be used for at least 12 weeks without any major deviation in the potential. The electrode revealed a very good selectivity with respect to all common alkali, alkaline-earth, transition, and heavy-metal ions. It was successfully applied to the recovery of copper ions from wastewater. The electrode was also used as an indicator electrode in the potentiometric titration of Cu(II) ions with EDTA. The text was submitted by the authors in English.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号