首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An all-electron scalar relativistic calculation on Cu n H (n = 1–13) clusters has been performed by using density functional theory with the generalized gradient approximation at the PW91 level. Our results reveal that the hydrogen atom prefers to occupy the two fold coordination site for Cu n H (n = 2, 4–6, 8, 10–13) clusters, the single fold coordination site for Cu n H (n = 1, 3, 7) and the three fold coordination site for Cu9H cluster. For all Cu n H clusters, only the Cu11 structure in Cu11H is distorted obviously. After adsorption, the Cu–Cu bond is strengthened and the Cu–H bond of odd-numbered Cu n H clusters is relatively stronger than that of adjacent even-numbered Cu n H clusters. The Cu–Cu bond-length and Cu–H bond-length for all Cu n H clusters of our work are significantly shorter than those of previous work. This discrepancy can be explained in terms of the scalar relativistic effect. The most favorable adsorption between small copper clusters and hydrogen atom takes place in the case that hydrogen atom is adsorbed onto an odd-numbered pure Cu n cluster and becomes Cu n H cluster with even number of valence electrons. The odd–even alteration of magnetic moments is observed in Cu n H clusters and may provide the material with tunable code capacity of “0” and “1” by adsorbing a hydrogen atom onto odd- or even-numbered copper clusters.  相似文献   

2.
The interaction between carbon oxide and [Au20–nCun]q clusters (n = 0, 1, 19, 20 and q = 0, ±1) is studied by means of DFT/PBE in the scalar relativistic approximation. To establish the composition and structure of an adsorption site, isomers of bimetallic Au19Cu and AuCu19 particles with different positions of the heteroatom at an apex, edge, and face of the tetrahedral framework are considered. The optimized structures are used as the basis to determine the electronic properties of clusters (average bond energy per atom, difference of energies between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO), ionization potential, electron affinity energy). The calculated parameters shrink as the copper content in clusters grows. Among the uncharged models, the highest CO adsorption energy is typical of Au19Cu, the heteroatom of which lies at a cluster’s apex. The CO adsorption energy for cationic and anionic clusters grows in comparison to neutral clusters.  相似文献   

3.
The initial steps of copper electrocrystallization process from aqueous solutions have been studied at DFT level of theory. It has been shown that Cu(H2O) unit is the final product of Cu2+-ions electroreduction. From this particle clusters Cun·aq are formed and grow. Aggregation of copper atoms to the Cun·aq clusters consists of two steps. The first step includes condensation of Cu(H2O) units to hydrated clusters Cun(H2O)n (n = 2–6). At the second step bonding of Cu(H2O) particles is accompanied by dehydration of clusters yielding Cun(H2O)m structures (n > m). Cluster Cu7·aq has been singled out as key structure based on calculated values of energies and Cu–Cu bond distances of Cun·aq clusters. This cluster is of D5h symmetry which is typical for copper microcrystals formed from aqueous solutions in electrocrystallization processes on foreign surface. This key particle could be considered as a critical nucleus. Number of copper atoms therein matches average dimension of critical nucleus.  相似文献   

4.
A theoretical study of the adsorption of molecular oxygen on small bimetallic LimCun (m, n ≤ 4) clusters was carried out using density functional methods, and it was compared with the adsorption of O2 on copper (Cun, n ≤ 8) clusters. The study of O2‐LimCun system is important to understand the promotion effects of the alkali atoms on the copper surface participating in the catalytic processes. Adsorption energies ranging from 7.9 to 51 kcal/mol were found, which represented values over 30% to those calculated for the adsorption of O2 on copper clusters in a previous study. Thus, the reactivity of molecular oxygen on bimetallic clusters is more favorable with high tendency being in favor of the dissociation of the O2 molecule. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2009  相似文献   

5.
An all-electron ab initio LCAO -MO SCF calculation has been carried out for the electronic structure of small copper clusters (Cun, n = 2–6). The basis set superposition error occurring in the calculation, the equilibrium configuration of Cu3, the bond energy in the clusters, and the localized d-hole in excited and ionized states of Cu2 are closely examined.  相似文献   

6.
A set of all-electron scalar relativistic calculations on Au n Cu (n = 1–12) clusters has been performed using density functional theory with the generalized gradient approximation at PW91 level. The lowest energy geometries of Au n Cu clusters may be considered as assemblies of triangular Au3 moieties substituted with one Cu atom at the highest coordinated site. All these lowest energy geometries of the Au n Cu clusters are slightly distorted but retain the planar structures of the Au n+1 clusters due to the strong scalar relativistic effects. The Au–Cu bonds are stronger, and a few Au–Au bonds far from the Cu atom are weaker, than the corresponding Au–Au bonds in pure Au n+1 clusters. After doping with a Cu atom, the thermodynamic stability and chemical reactivity are enhanced to some extent. The odd-numbered Au n Cu clusters with even numbers of valence electrons are more stable than the neighboring even-numbered Au n Cu clusters with odd numbers of valence electrons. Odd–even alternations of magnetic moments and electronic configurations for the Au n Cu clusters can be observed clearly and may be understood in terms of the electron pairing effect.  相似文献   

7.
Relativistic effects on the properties of small neutral Pdn species (n=1, 2, 4) and Pd2 have been examined for the first time at the all‐electron level by performing scalar‐relativistic and nonrelativistic density functional calculations using a gradient‐corrected density functional. Relativistic effects are found to be important: They lead to a contraction of bond lengths, increase of vibrational frequencies, and a significant enhancement of binding energies. While relativistic effects are quite uniform for several states of Pd4, they vary for the states examined for Pd2, leading to a change of ground state due to relativity. The calculated relativistic properties of Pd2 and Pd2 are in good agreement with available experimental data from mass spectrometry and photoelectron spectroscopy. For Pd4 three‐dimensional structures are found to be preferred to planar ones and many nearly isoenergetic isomers exist. ©1999 John Wiley & Sons, Inc. Int J Quant Chem 74: 405–416, 1999  相似文献   

8.
Density functional GGA-PW91 method with DNP basis set is applied to optimize the geometries of Ag n H (n = 1–10) clusters. For the lowest energy geometries of Ag n H (n = 1–10) clusters, the hydrogen atom prefers to occupy the two-fold coordination bridge site except the occupation of single-fold coordination site in AgH cluster. After adsorption of hydrogen atom, most Ag n structures are slightly perturbed and only the Ag6 structure in Ag6H cluster is distorted obviously. The Ag–Ag bond is strengthened and the strength of Ag–H bond exhibits a clear odd–even oscillation like the strength of Au–H bond in Au n H clusters, indicating that the hydrogen atom is more favorable to be adsorbed by odd-numbered pure silver clusters. The adsorption strength of small silver cluster toward H atom is obviously weaker than that of small gold cluster toward H atom due to the strong scalar relativistic effect in small gold cluster. The pronounced odd–even alternation of the magnetic moments is observed in Ag n H systems, indicating that the Ag n H clusters possess tunable magnetic properties by adsorbing hydrogen atom onto odd-numbered or even-numbered small silver cluster.  相似文献   

9.
The reaction of N2 with trinuclear niobium and tungsten sulfide clusters Nb3Sn and W3Sn (n=0–3) was systematically studied by density functional theory calculations with TPSS functional and Def2-TZVP basis sets. Dissociations of N−N bonds on these clusters are all thermodynamically allowed but with different reactivity in kinetics. The reactivity of Nb3Sn is generally higher than that of W3Sn. In the favorite reaction pathways, the adsorbed N2 changes the adsorption sites from one metal atom to the bridge site of two metal atoms, then on the hollow site of three metal atoms, and at that place, the N−N bond dissociates. As the number of ligand S atoms increases, the reactivity of Nb3Sn decreases because of the hindering effect of S atoms, while W3S and W3S2 have the highest reactivity among four W3Sn clusters. The Mayer bond order, bond length, vibrational frequency, and electronic charges of the adsorbed N2 are analyzed along the reaction pathways to show the activation process of the N−N bond in reactions. The charge transfer from the clusters to the N2 antibonding orbitals plays an essential role in N−N bond activation, which is more significant in Nb3Sn than in W3Sn, leading to the higher reactivity of Nb3Sn. The reaction mechanisms found in this work may provide important theoretical guidance for the further rational design of related catalytic systems for nitrogen reduction reactions (NRR).  相似文献   

10.
11.
An all-electron scalar relativistic calculation on Au n AgCO (n = 1–12) clusters has been performed using density functional theory with the generalized gradient approximation at PW91 level. The introduction of impurity silver weakens the adsorption, and, however, promotes the reactivity enhancement of CO molecule. The CO molecule is relatively more favorable to be adsorbed by the odd-numbered Au n Ag clusters with closed-shell electronic structure. The values of chemical hardness indicate that the Au n AgCO cluster is less stable than the corresponding Au n+1CO cluster chemically. This picture of the influence of impurity silver on the adsorption behavior of Au n Ag (n = 1–12) clusters toward CO molecule is consistent with previous experimental work (Haeck et al. in J Phys Chem A 115:2103, 2011), in which the cluster’s reaction probability toward CO molecule is reduced upon substitution of gold atoms for silver and the clusters with closed electronic shell are the most reactive toward CO molecule.  相似文献   

12.
The electronic structure and photochemistry of copper formate clusters, CuI2(HCO2)3 and CuIIn(HCO2)2n+1, n≤8, are investigated in the gas phase by using UV/Vis spectroscopy in combination with quantum chemical calculations. A clear difference in the spectra of clusters with CuI and CuII copper ions is observed. For the CuI species, transitions between copper d and s/p orbitals are recorded. For stoichiometric CuII formate clusters, the spectra are dominated by copper d–d transitions and charge-transfer excitations from formate to the vacant copper d orbital. Calculations reveal the existence of several energetically low-lying isomers, and the energetic position of the electronic transitions depends strongly on the specific isomer. The oxidation state of the copper centers governs the photochemistry. In CuII(HCO2)3, fast internal conversion into the electronic ground state is observed, leading to statistical dissociation; for charge-transfer excitations, specific excited-state reaction channels are observed in addition, such as formyloxyl radical loss. In CuI2(HCO2)3, the system relaxes to a local minimum on an excited-state potential-energy surface and might undergo fluorescence or reach a conical intersection to the ground state; in both cases, this provides substantial energy for statistical decomposition. Alternatively, a CuII(HCO2)3Cu0− biradical structure is formed in the excited state, which gives rise to the photochemical loss of a neutral copper atom.  相似文献   

13.
The activation of C?H bonds in alkanes is currently a hot research topic in chemistry. The atomic oxygen radical anion (O?.) is an important species in C?H activation. The mechanistic details of C?H activation by O?. radicals can be well understood by studying the reactions between O?. containing transition metal oxide clusters and alkanes. Here the reactivity of scandium oxide cluster anions toward n‐butane was studied by using a high‐resolution time‐of‐flight mass spectrometer coupled with a fast flow reactor. Hydrogen atom abstraction (HAA) from n‐butane by (Sc2O3)NO? (N=1–18) clusters was observed. The reactivity of (Sc2O3)NO? (N=1–18) clusters is significantly sizedependent and the highest reactivity was observed for N=4 (Sc8O13?) and 12 (Sc24O37?). Larger (Sc2O3)NO? clusters generally have higher reactivity than the smaller ones. Density functional theory calculations were performed to interpret the reactivity of (Sc2O3)NO? (N=1–5) clusters, which were found to contain the O?. radicals as the active sites. The local charge environment around the O?. radicals was demonstrated to control the experimentally observed size‐dependent reactivity. This work is among the first to report HAA reactivity of cluster anions with dimensions up to nanosize toward alkane molecules. The anionic O?. containing scandium oxide clusters are found to be more reactive than the corresponding cationic ones in the C?H bond activation.  相似文献   

14.
Density functional theory calculations are performed to analyze the structure and stability of Cu and Cu-K clusters with 3 to 9 atoms. The results indicate that the stability of the clusters decreases after doping with a K atom. With the increase of cluster size, the stability of the clusters shows odd-even alternation. Cu8 and Cu7K clusters exhibit the highest stability. Next, different adsorption sites are considered to investigate the geometry of CunNO and Cun−1KNO clusters. By calculating the adsorption energy and the HOMO-LUMO energy gap, it is determined that both types of reactions are exothermic processes, indicating stable adsorption of NO. Notably, the CunK clusters are more active (stronger adsorption) for NO than the Cun clusters. The most chemically active clusters among CunNO and Cun−1KNO clusters are Cu8NO and Cu7KNO clusters. Finally, electron transfer and Mayer bond order analysis of Cu8NO and Cu7KNO clusters reveal that the N O bond order decreases due to electron transfer when Cu/Cu-K clusters adsorb NO. In this process, the N atom is the electron donor and the Cu atom is the electron acceptor. Fundamental insights obtained in this study can be useful in the design of Cu/Cu-K catalysts.  相似文献   

15.
Summary Dimeric and polymeric copper(II) complexes containing BPCA (N-2-pyridinylcarbonyl-2-pyridinecarboximidate), having general formulae Cu(BPCA)X·nH2O (X=Cl, Br, NCS, NCO, N3, or CN) and Cu2(BPCA)2-X·nH2O [X=oxalate anion (OX), chloranilate anion (CA) or the dianion of 2,5-dihydroxy-1,4-benzoquinone (DHBQ)] have been synthesized by the copper(II)-assisted hydrolysis of 2, 4, 6-tris(2-pyridyl)-1, 3, 5-triazine. Spectroscopic results indicate five-coordinate, approximately square-pyramidal, geometry around the copper(II) ion. Half-field absorption in the M s=±2 region of the X-band e.p.r. powder spectra has been observed for the dimeric species.  相似文献   

16.
In this study, electronic structure, stability, and tendency to exchange electron of neutral, anionic, and cationic Rh x Cu4?x (x = 0–4) small clusters were investigated by density functional theory calculations. For neutral small clusters, it was found that the most stable structures of Rh4, Rh3Cu and Rh2Cu2 have distorted tetrahedral shape while the most stable structures of RhCu3 and Cu4 have quasi-planer shape. Adding charges to the clusters, caused shapes of the most stable structures undergo variations. Stabilities of the neutral, anionic, and cationic clusters decrease linearly with increasing the copper content. In addition, calculated chemical harnesses indicated that the small cluster with 75 % copper content has the least chemical hardness. Interestingly, prevailing number of electronegative (Rh) and electropositive (Cu) atoms in the anionic and cationic clusters coincides with high dipole moment in these species that occur at 25 and 75 % copper respectively.  相似文献   

17.

The present study examines bonding patterns between copper Cun clusters (n?=?3–20) and aromatic compounds (benzene, phenol, and benzaldehyde) using a density-functional theory (DFT) approach. Hirshfeld population, natural bond orbital (NBO), molecular orbitals, and quantum theory of atoms in molecules (QTAIM) analyses suggested the formation of two types of interactions Cu–arene and C–H···Cu, in the complexation of copper clusters by an aromatic compound.

  相似文献   

18.
The spherical jellium model and self-consistent Weighted Density Approximation (WDA) to density functional theory have been used to study the stability of X N n (n=?1, 0, +1, +2; X=Ag, Cu;N≤25) clusters. The calculated magic numbers coincide with the observed ones. The first (IP1) and second (IP2) ionization potentials of Ag N and Cu N as a function of size show the typical oscillations induced by the electronic shell-filling effect. IP1 of Cu N is about 0.5 eV higher than IP1 of Ag N in the range studied (N≤25). For both Cu N and Ag N , IP1 appears to converge well towards the respective experimental values of the work function. The use of WDA allows us to obtain bound negative clusters of small size or with a nearly empty external shell, which is not possible using the Local Density Approximation (LDA) [1, 2]. However the electron affinity of X N clusters obtained as the difference of energies of the neutral and the negatively charged clusters, becomes negative forN=2, 3 and 8 (very close to zero forN=8), revealing that WDA needs further refinements.  相似文献   

19.
The present structure determination of di‐μ‐hydroxo‐bis{[N,N′‐bis­(dipiperidino­methyl­ene)­propane‐1,3‐di­amine‐κ2N,N′]copper(II)} bis­(hexa­fluoro­phosphate), [Cu2(OH)2(C25H46N6)2](PF6)2, is the first to crystallographically characterize a Cu2(μ‐OH)2 complex with a bidentate guanidine ligand. The cation lies on a crystallographic inversion centre and shows planar fourfold coordination of the copper centres. The Cu2(μ‐OH)2 species can be distinguished from Cu2(μ‐O)2 by the Cu—O bond lengths. The packing is determined by strong intermolecular anion–cation hydrogen bonds.  相似文献   

20.
Reaction of copper(II) cyanate with pyrazine leads to the formation of [Cu(NCO)2(pyrazine)]n ( 1 ), in which the Cu2+ cations are coordinated by two nitrogen atoms of the pyrazine ligands, as well as by four nitrogen atoms of the cyanate anions within a slightly distorted octahedral coordination. In the crystal structure the Cu2+ cations are connected by the pyrazine ligands into chains which are further linked by the cyanate anions through asymmetric μ‐1,1‐NCO coordination into layers. On heating compound 1 transforms quantitatively to copper(II) cyanate which decompose to elemental copper on further heating. No ligand deficent intermediates are observed. Magnetic measurements reval an antiferromagnetic ordering at lower temperatures mediated by the π‐system of the aromatic pyrazine ligand as well as net ferromagnetic interactions mediated by the μ‐1,1‐NCO bridging cyanato anions. A search in the Cambridge Crystal Structure Database shows that the terminal coordination mode in cyanato complexes as well as their azido and thiocyanato analogs is obviously energetically favored. In addition, a comparison of their symmetric and asymmetric end‐on (μ‐1,1) as well as end‐to‐end (μ‐1,3) bridging modes reveal interesting correlations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号