首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A novel method combining matrix solid phase dispersion (MSPD) with Soxhlet simultaneous extraction clean-up (SSEC) was developed. Being a single-step extraction and clean-up procedure, it could be used instead of multistep solvent extraction and Florisol column clean-up. It not only reduces sample contamination during the procedure, but it also decreases the amount of organic solvent needed. The retention times of standards were used to qualitatively assess the method, and the external standard method was used to quantitatively assess it. Residues of organochlorine pesticides (OCP) in tobaccos were determined by gas chromatography–electron capture detection (GC–ECD), and their identities were confirmed by the standard addition method (SAM). The performance of the method was evaluated and validated: the detection limit was 0.01–0.02 μg g−1, relative standard deviations were 5–26%, and recoveries were 72–99% at fortification levels of 0.10, 1.00 and 10.0 μg g−1. The analytical characteristics of MSPD–SSEC compared very favorably with the results from the classical multistep solvent extraction and Florisol column clean-up method.  相似文献   

2.
This study describes the development and validation of a time-resolved fluoroimmunoassay (TR-FIA) for screening ractopamine (RAC) in swine tissue. The method is based on the direct competitive-type immunoassay using europium-labeled anti-RAC monoclonal antibody as a tracer and RAC–ovalbumin as a solid-phase antigen. When RAC was spiked at levels of 1–10 μg kg−1, recoveries ranged from 88.2 to 118.5% for swine liver and muscle with coefficients of variation from 7.1 to 20.5%. The detection limit was 0.1 μg kg−1. The proposed TR-FIA method was applied to the determination of RAC in an actual residue study and the applicability was confirmed by liquid chromatography–tandem mass spectrometry.  相似文献   

3.
A rapid extraction procedure has been developed for speciation of arsenic in chicken tissue. Water, methanol–water (1:1), and methanol–chloroform (1:1) were tested as extraction media. Individual use of an ultrasonic bath, a microwave oven, or an ultrasonic probe was not sufficient for quantitative recovery of As(III), dimethylarsinate, monomethylarsonate, As(V), and arsenobetaine in spiked samples of chicken tissue. A new extraction procedure using a methanol–water mixture and a microwave oven then an ultrasonic probe enabled extraction of the arsenic species in 7 min with efficiencies ranging from 80 to 100%. HPLC–UV–HG–AFS was used for the determinations. The extraction procedure was 100% efficient when applied to real samples of chicken tissue. AsB (48±5 μg As kg −1) and one containing-arsenic feed additive, Nitarsone (227±5 μg As kg −1) were detected.  相似文献   

4.
A new adsorbent is proposed for the solid-phase extraction of phenol and 1-naphthol from polluted water. The adsorbent (TX-SiO2) is an organosilica composite made from a bifunctional immobilized layer comprising a major fraction (91%) of hydrophilic diol groups and minor fraction (9%) of the amphiphilic long-chain nonionic surfactant Triton X-100 (polyoxyethylated isooctylphenol) (TX). Under static conditions phenol was quantitatively extracted onto TX-SiO2 in the form of a 4-nitrophenylazophenolate ion associate with cetyltrimethylammonium bromide. The capacity of TX-SiO2 for phenol is 2.4 mg g−1 with distribution coefficients up to 3.4 × 104 mL g−1; corresponding data for 1-naphthol are 1.5 mg g−1 and 3 × 103 mL g−1. The distribution coefficient does not change significantly for solution volumes of 0.025–0.5 L and adsorbent mass less than 0.03 g; 1–90 μg analyte can be easily eluted by 1–3 mL acetonitrile with an overall recovery of 98.2% and 78.3% for phenol and 1-naphthol, respectively. Linear correlation between acetonitrile solution absorbance (A 540) and phenol concentration (C) in water was found according to the equation A 540 = (6 ± 1) × 10−2 + (0.9 ± 0.1)C (μmol L−1) with a detection range from 1 × 10−8 mol L−1 (0.9 μL g−1) to 2 × 10−7 mol L−1 (19 μL g−1), a limit of quantification of 1 μL g−1 (preconcentration factor 125), correlation coefficient of 0.936, and relative standard deviation of 2.5%. A solid-phase colorimetric method was developed for quantitative determination of 1-naphthol on adsorbent phase using scanner technology and RGB numerical analysis. The detection limit of 1-naphthol with this method is 6 μL g−1 while the quantification limit is 20 μL g−1. A test system was developed for naked eye monitoring of 1-naphthol impurities in water. The proposed test kit allows one to observe changes in the adsorbent color when 1-naphthol concentration in water is 0.08–3.2 mL g−1.  相似文献   

5.
Summary Formaldehyde, as its dimedone adduct formaldemethone, has been detected and quantified in all the tested species of angiosperms, gymnosperms, pteridophytes, lichens and fungi, as well as in the two species tested of cyanobacteria and the one species of charophyte. Yields ranged from<10μg g−1 to 6940 μg g−1 fresh weight, calculated as formaldemethone (equivalent to <1 μg g−1 to 713 μg g−1 fresh weight, calculated as formaldehyde). An HPLC procedure was used for quantification of formaldemethone. A linear relationship was found between 20 and 2160 μg g−1 and the statistical limit of detection was calculated as 48 μg g−1.  相似文献   

6.
Summary The determination of the antibiotic oxytetracycline (OTC), in pig tissues was investigated by capillary zone electrophoresis (CZE) with a prior solid-phase extraction (SPE) using alkyl-bonded silica and polymeric cartridges. The methodology developed allows determination of OTC in pig kidney, liver and muscle samples with detection limits below maximum residue limit values, and the procedures to extract OTC and clean-up the matrix are simple and reliable. The limit of detection for OTC was 160, 120 and 85 μg kg−1 for kidney, liver and muscle samples, respectively. The average recoveries from spiked samples (200 μg kg−1 and 1600 μg kg−1) were in excess of 63% with coefficients of variation between 2.0 and 9.8%. This method would be useful for routine monitoring of oxytetracycline residues in pig tissues.  相似文献   

7.
The cadmium ratios of 52 short-lived nuclides have been measured. Epithermal neutron irradiation reduces the activities of20F,27Mg,28Al,38Cl,49Ca,46mSc,51Ti,56Mn and66Cu by factors of 20–30. The calculated improvements in detection limits for Ga, Br, Rb, Y, Mo, Rh, Pd, Ag, In, Sn, Sb, I, Ba, Nd, Sm, Gd, Dy, Er, Yb, Hf, W, Re, Pt, Au, Th and U are in the range 1–6. Hafnium was measured in USGS rocks: AGV-1 (4.9 μg g−1), G-2 (7.5 μg g−1) and GSP-1 (14.7 μg g−1) and IAEA standards: SOIL-5 (6.3 μg g−1 and SL-1 (4.6 μg g−1). CCRMP reference concentrates PTC and PTM were analysed for rhodium (1.1 and 0.75 μg g−1, respectively) and silver (69 and 5.8 μg g−1, respectively).  相似文献   

8.
Arsenic-speciation analysis in marine samples was performed by high-pressure liquid chromatography (HPLC) with ICP–MS detection. Separation of eight arsenic species—AsIII, MMA, DMA, AsV, AB, TMAO, AC and TeMAs+—was achieved on a C18 column with isocratic elution (pH 3.0), under which conditions AsIII and MMA co-eluted. The entire separation was accomplished in 15 min. The HPLC–ICP–MS detection limits for the eight arsenic species were in the range 0.03–0.23 μg L−1 based on 3σ for the blank response (n=5). The precision was calculated to be 2.4–8.0% (RSD) for the eight species. The method was successfully applied to several marine samples, e.g. oysters, fish, shrimps, and marine algae. Low-power microwave digestion was employed for extraction of arsenic from seafood products; ultrasonic extraction was employed for the extraction of arsenic from seaweeds. Separation of arsenosugars was achieved on an anion-exchange column. Concentrations of arsenosugars 2, 3, and 4 in marine algae were in the range 0.18–9.59 μg g−1. This paper was presented at the European Winter Conference 2005  相似文献   

9.
Dispersive liquid–liquid microextraction (DLLME) has been used for preconcentration of trihalomethanes (THMs) in drinking water. In DLLME an appropriate mixture of an extraction solvent (20.0 μL carbon disulfide) and a disperser solvent (0.50 mL acetone) was used to form a cloudy solution from a 5.00-mL aqueous sample containing the analytes. After phase separation by centrifugation the enriched analytes in the settled phase (6.5 ± 0.3 μL) were determined by gas chromatography with electron-capture detection (GC–ECD). Different experimental conditions, for example type and volume of extraction solvent, type and volume of disperser solvent, extraction time, and use of salt, were investigated. After optimization of the conditions the enrichment factor ranged from 116 to 355 and the limit of detection from 0.005 to 0.040 μg L−1. The linear range was 0.01–50 μg L−1 (more than three orders of magnitude). Relative standard deviations (RSDs) for 2.00 μg L−1 THMs in water, with internal standard, were in the range 1.3–5.9% (n = 5); without internal standard they were in the range 3.7–8.6% (n = 5). The method was successfully used for extraction and determination of THMs in drinking water. The results showed that total concentrations of THMs in drinking water from two areas of Tehran, Iran, were approximately 10.9 and 14.1 μg L−1. Relative recoveries from samples of drinking water spiked at levels of 2.00 and 5.00 μg L−1 were 95.0–107.8 and 92.2–100.9%, respectively. Comparison of this method with other methods indicates DLLME is a very simple and rapid (less than 2 min) method which requires a small volume of sample (5 mL).  相似文献   

10.
Hollow-fiber liquid-phase microextraction (HF-LPME), a relatively new sample preparation technique, has attracted much interest in the field of environmental analysis. In the current study, a novel method based on hollow-fiber liquid-phase microextraction with in situ derivatization and gas chromatography–mass spectrometry for the measurement of triclosan in aqueous samples is described. Hollow-fiber liquid-phase microextraction conditions such as the type of extraction solvent, the stirring rate, the volume of derivatizing reagent, and the extraction time were investigated. When the conditions had been optimized, the linear range was found to be 0.05–100 μg l−1 for triclosan, and the limit of detection to be 0.02 μg l−1. Tap water and surface water samples collected from our laboratory and Wohushan reservoir, respectively, were successfully analyzed using the proposed method. The recoveries from the spiked water samples were 83.6 and 114.1%, respectively; and the relative standard deviation (RSD) at the 1.0 μg l−1 level was 6.9%.  相似文献   

11.
A new ternary ion-association complex of tungsten(VI), 4-nitrocatechol (NC), and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (Thiazolyl Blue, MTT) was obtained and studied using an extraction-spectrophotometric method. The optimum pH, reagent concentrations, and extraction time were determined. The composition of the complex was found to be W(VI): NC: MTT = 1: 2: 2. The extraction process was investigated quantitatively and the key constants were calculated. The molar absorptivity of the chloroform extract at λmax = 415 nm was 2.8 × 104 dm3 mol−1 cm−1, and the Beer’s law was obeyed up to 8.8 μg cm−3 tungsten(IV). The limit of detection and limit of quantification were calculated to be 0.27 μg cm−3 and 0.92 μg cm−3, respectively. The effect of foreign ions and reagents was studied and a competitive method for determination of tungsten in products from ferrous metallurgy was developed. The residual standard deviation and the relative error were 0.53 % and 0.2 %, respectively.  相似文献   

12.
A high-performance liquid chromatography–UV method for determining DCJW concentration in rat plasma was developed. The method described was applied to a pharmacokinetics study of intramuscular injection in rats. The plasma samples were deproteinized with acetonitrile in a one-step extraction. The HPLC assay was carried out using a VP-ODS column and the mobile phase consisting of acetonitrile–water (80:20, v/v) was used at a flow rate of 1.0 mL min−1 for the effective eluting DCJW. The detection of the analyte peak area was achieved by setting a UV detector at 314 nm with no interfering plasma peak. The method was fully validated with the following validation parameters: linearity range 0.06–10 μg mL−1 (r > 0.999); absolute recoveries of DCJW were 97.44–103.46% from rat plasma; limit of quantification, 0.06 μg mL−1 and limit of detection, 0.02 μg mL−1. The method was further used to determine the concentration–time profiles of DCJW in the rat plasma following intramuscular injection of DCJW solution at a dose of 1.2 mg kg−1. Maximum plasma concentration (C max) and area under the plasma concentration–time curve (AUC) for DCJW were 140.20 ng mL−1 and 2405.28 ng h mL−1.  相似文献   

13.
A simple and efficient method, based on ultrasound-enhanced surfactant-assisted dispersive liquid–liquid microextraction (UESA-DLLME) followed by high-performance liquid chromatography (HPLC) has been developed for extraction and determination of ketoconazole and econazole nitrate in human blood samples. In this method, a common cationic surfactant, cetyltrimethylammonium bromide (CTAB), was used as dispersant. Chloroform (40 μL) as extraction solvent was added rapidly to 5 mL blood containing 0.068 mg mL−1 CTAB. The mixture was then sonicated for 2 min to disperse the organic chloroform phase. After the extraction procedure, the mixture was centrifuged to sediment the organic chloroform phase, which was collected for HPLC analysis. Several conditions, including type and volume of extraction solvent, type and concentration of the surfactant, ultrasound time, extraction temperature, pH, and ionic strength were studied and optimized. Under the optimum conditions, linear calibration curves were obtained in the ranges 4–5000 μg L−1 for ketoconazole and 8–5000 μg L−1 for econazole nitrate, with linear correlation coefficients for both >0.99. The limits of detection (LODs, S/N = 3) and enrichment factors (EFs) were 1.1 and 2.3 μg L−1, and 129 and 140 for ketoconazole and econazole nitrate, respectively. Reproducibility and recovery were good. The method was successfully applied to the determination of ketoconazole and econazole nitrate in human blood samples.  相似文献   

14.
A rapid and simple procedure for the determination of antioxidants and preservatives in cosmetics has been developed utilizing solid-phase microextraction combined with GC–MS. A silica fiber coated with polyacrylate provided the highest extraction efficiency. Detection limits in the range from 0.4 to 8.5 ng mL−1 were obtained. Linearity is over a wide range from 1 to 2,000 ng mL−1 with a relative standard deviation under 16%. Cosmetic from a local supermarket were analysed for antioxidants and preservatives to demonstrate the effectiveness of the proposed method. The concentration of antioxidants and preservatives determined was 20–1,218 μg g−1 for methylparaben and 5–3,779 μg g−1 for propylparaben.  相似文献   

15.
A rapid, accurate, and precise method is described for the determination of Pb in wine using continuous-flow hydride generation atomic fluorescence spectrometry (CF-HGAFS). Sample pretreatment consists of ten-fold dilution of wine followed by direct plumbane generation in the presence of 0.1 mol L−1 HCl and 1% m/v K3[Fe(CN)6] with 1% m/v NaBH4 as reducing agent. An aqueous standard calibration curve is recommended for Pb quantification in wine sample. The method provides a limit of detection and a limit of quantification of 0.3 μg L−1 and 1 μg L−1, respectively. The relative standard deviation varies between 2–6% (within-run) and 4–11% (between-run) at 3–30 μg L−1 Pb levels in wine. Good agreement has been demonstrated between results obtained by CF-HGAFS and direct electrothermal atomic absorption spectrometry in analyses of red and white wines within the concentration range of 9.2–25.8 μg L−1 Pb.  相似文献   

16.
Summary A simple, low-cost, sensitive and selective HPLC method was developed for the determination of phenazopyridine in human plasma. The method employs UV detection of phenazopyridine and of the internal Standard at 2 different wavelengths. Calibration curves were linear over a large dynamic range, i.e., within 0.05–10.0 μg mL−1 with limit of quantification of 0.05 μg mL−1, and a limit of detection of 0.01 μg mL−1.  相似文献   

17.
A rapid and inexpensive method for simultaneous quantification of terbumeton (TER), and its major potential metabolites (TED; terbumeton-desethyl, TOH; terbumeton-2-hydroxy and TID; terbumeton-deisopropyl) in soil bulk water (SBW) samples is proposed. The analytical method involves extraction–concentration from SBW samples using a graphitized carbon black (GCB) cartridge followed by their separation–detection by reversed-phase high-performance liquid chromatography analysis using a C18 column and a diode array detector. A mobile phase of acetonitrile−0.005 mol L−1 phosphate buffer (pH 7.0) (35:65, v/v) at a flow rate of 0.8 mL min−1 in isocratic elution mode has been used. After optimization of the extraction and separation conditions, this method can be used for the simultaneous determination of investigated compounds in the range of the international limits of 0.1 μg L−1. For TER the detection limit was 0.009 μg L−1 and it was 0.100, 0.550, and 0.480 μg L−1 for TED, TOH, and TID, respectively. The recoveries of TER, TED, TOH, and TID from SBW samples, measured at three levels of concentration range, were found to be between 48.0 and 102.0%. The intra-day precision measured by relative standard deviation (RSD) was always lower than 9.0%.  相似文献   

18.
A simple and sensitive dispersive liquid-liquid microextraction method for extraction and preconcentration of pentachlorophenol (PCP) in water samples is presented. After adjusting the sample pH to 3, extraction was performed in the presence of 1% W/V sodium chloride by injecting 1 mL acetone as disperser solvent containing 15 μL tetrachloroethylene as extraction solvent. The proposed DLLME method was followed by HPLC-DAD for determination of PCP. It has good linearity (0.994) with wide linear dynamic range (0.1–1000 μg L−1) and low detection limit (0.03 μg L−1), which makes it suitable for determination of PCP in water samples.   相似文献   

19.
A new method is described for simultaneous determination of 3-methylindole (3MI) and indole in porcine adipose tissue. Sample preparation included liquid–liquid extraction with n-hexane and 75% aqueous acetonitrile. The acetonitrile extracts were analysed by liquid chromatography–mass spectrometry (LC–MS) using atmospheric pressure chemical ionization (APCI) with selective ion monitoring of protonated ions [M + H]+. This method showed excellent linearity over the concentration range tested (from 2 to 500 ng mL−1 for 3MI and from 1 to 500 ng mL−1 for indole) and good accuracy (recovery of 92 ± 10% for 3MI and 91 ± 10% for indole). This new LC–MS method was compared with traditional colorimetric method for 3MI equivalent. Additionally, the correlation between 3MI concentrations in adipose tissue and plasma was studied. The described LC–MS method can be used to quantify 3MI and indole in porcine adipose tissue in various endocrinological or meat science studies.  相似文献   

20.
Directly suspended droplet liquid–liquid–liquid microextraction (LLLME) has been used to determine residues of diclofenac (2-[2-(2,6-dichlorophenyl) aminophenyl] ethanoic acid), in environmental water samples. In this technique a free suspended droplet of an aqueous solvent is delivered to the top-center position of an immiscible organic solvent floating on the top of an aqueous sample while being agitated by a stirring bar placed on the bottom of the sample cell. Recently, diclofenac was found as an environmental contaminant in sewage, surface, ground and drinking water samples. In the present work, diclofenac was extracted from water samples by LLLME and analysed by HPLC with UV detection at 281 nm. Factors such as organic solvent, extraction and back extraction times, stirring rate and the pH of acceptor and donor phases were optimized. Enrichment factor and detection limit (LOD, n = 7) were 102 and 0.1 μg L−1, respectively. The linearity ranged from 0.5 to 2,000 μg−1 with a %RSD (n = 5) of 7.2 at S/N = 3. All experiments were carried out at room temperature (22 ± 0.5 °C).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号