首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Dendritic polyaniline nanofibers and submicrometer-sized fibers have been synthesized by chemical oxidative polymerization of aniline (An) doped with salicylic acid (SA). The diameters of the fibers could be controlled easily from 30 to 400 nm by varying the concentration of aniline and salicylic acid at room temperature. Scanning electron microscopy (SEM) and typical transmission electron microscopy (TEM) were applied to investigate their morphologies. . Fourier transform infrared (FTIR) spectrum indicated that the state of the dendritic polyaniline fibers is emerialdine rather than solely the leucoemeraldine or permigraniline forms. The dendritic polyaniline fibers have potential applications as chemical sensors or actuators and neuron devices.  相似文献   

2.
以锌盐、铁盐和聚乙烯吡咯烷酮(PVP)为原料,通过静电纺丝法先制备PVP/硝酸盐复合纤维,这些复合纤维以5℃·min-1的升温速率加热到500℃并保温3h,最终得到铁酸锌(ZnFe2O4)中空纤维.通过X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)以及振动样品磁强计(VSM)等分析手段对中空纤维的晶体结构、形貌和磁学性能进行了研究.结果显示,ZnFe2O4中空纤维属于尖晶石结构,高温处理后仍能保持一维结构,纤维直径在200-400nm之间,纤维壁由大小为25nm的颗粒堆积而成.室温磁化结果显示制备的ZnFe2O4中空纤维具有超顺磁性,在10kOe的磁化强度为2.03emu·g-1.  相似文献   

3.
Long alpha-Fe(2)O(3) hollow fibers have been prepared through a facile sol-gel combined co-electrospinning technique using ferric citrate as precursor, and alpha-Fe and gamma-Fe(2)O(3) hollow fibers have been obtained by reduction and reoxidation at different conditions. The outer diameter of the as-prepared hollow fibers is 0.5-5 microm with wall thickness of 200-800 nm. The obtained tubular fibers were characterized by thermal gravimetric (TG), FT-IR spectra, X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and Raman techniques. In addition, magnetic properties of alpha-Fe and gamma-Fe(2)O(3) hollow fibers have also been investigated.  相似文献   

4.
Electrospinning has been emerging as one of the most efficient methods to fabricate polymer nanofibers. In this paper, PS/clay nanocomposite fibers with varying diameters were electrospun onto solid substrates. The fiber diameters were adjusted from 4 microm to 150 nm by changing the solution concentration. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), and atomic force microscopy (AFM) were used to characterize the fiber morphology. Shear modulation force microscopy (SMFM) was utilized to investigate the surface nanomechanical properties of electrospun fibers as a function of the fiber diameter and temperature. In the absence of clay, no change in T(g) was observed, even though a large increase of shear modulus below the glass transition temperature was found. This effect was postulated to result from the molecular chain alignment during electrospinning. The addition of functionalized clays to the spinning solution produced fibers with a highly aligned montmorillonite layer structure at a clay concentration of 4 wt %. Clay agglomerates were observed at higher concentrations. The existence of clay further enhanced the shear modulus of fibers and increased the glass transition temperature by nearly 20 degrees C.  相似文献   

5.
Poly(vinyl alcohol) (PVA)/attapulgite (AT) nanocomposite fibers have been prepared by wet spinning. The morphology and mechanical properties of the modified PVA fibers have been characterized with transmission electron microscopy, scanning electron microscopy (SEM), differential scanning calorimetry (DSC), birefringence measurements, and mechanical testing. The PVA/AT nanocomposite fibers show much higher tensile strength, initial modulus, and work to break than pure PVA fibers with the same draw ratio. SEM observations demonstrate that the AT nanorods can align orderly along the fiber axis by stretching and have good adhesion to the fiber matrix. The results of birefringence measurements prove that the modified fibers have higher orientation than pure PVA fibers after stretching. The results of DSC analysis indicate that the crystallinity of the PVA fibers can be increased by the addition of AT. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1995–2000, 2006  相似文献   

6.
Hollow LiNiO2 fibers have been prepared with a capillary spinneret electrospinning technique combined with the sol–gel method, and the possible mechanism for the fabrication of the hollow fibers was discussed. The xerogel fibers and those calcined at different temperatures were characterized by thermogravimetric (TG) analysis, X-ray diffractometry (XRD), Fourier transform infrared (FT-IR) spectrum, transmission electron microscopy (TEM), scanning electron microscopy (SEM) and etc. The Polyvinyl Pyrrolidone (PVP) has an important role in the formation of hollow LiNiO2 fibers.  相似文献   

7.
Well‐separated and parallel aligned fibers of various polymers have been prepared by a simple but effective melt‐drawing procedure, and their structural features have been studied with field‐emission scanning electron microscopy. The results show that the resulting polymer fibers, with diameters ranging from tens of nanometers to hundreds of nanometers, consist of highly oriented lamellar or fibrillar crystals with the molecular chains aligned in the drawing direction. Scanning electron microscopy images of the drawing process indicate that drawing a thin polymer molten layer at temperature far above its melting point leads to the formation of elongated microcracks. The microcracks embedded in the polymer thin film propagate along the drawing direction and result in the formation of polymer microfibers, which split continuously under high instantaneous stresses and produce well‐separated polymer fibers with diameters on the nanometer scale. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2703–2709, 2004  相似文献   

8.
In an effort to prepare electrically conductive nanofiber and nanotube materials, polypyrrole/poly(methyl methacrylate) coaxial fibers have been prepared using polymer fibers produced from an electrospinning process. Poly(methyl methacrylate) (PMMA) fibers with an average diameter of 230 nm were initially fabricated by electrospinning as core materials. The PMMA fibers were subsequently coated as templates with a thin layer of polypyrrole (PPy) by in-situ deposition of the conducting polymer from aqueous solution. Hollow PPy tubes were produced by dissolution of the PMMA core from PPy/PMMA coaxial fibers. High-temperature (1000 degrees C) treatment under inert atmosphere converted PPy/PMMA coaxial fibers into carbon tubes by complete decomposition of PMMA fiber core and carbonization of the PPy wall. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), and FT-IR spectroscopy confirmed the formation of the PPy/PMMA coaxial fibers, PPy tubes, and carbon tubes.  相似文献   

9.
Cellulose nonwoven mats of submicron‐sized fibers (150 nm–500 nm in diameter) were obtained by electrospinning cellulose solutions. A solvent system based on lithium chloride (LiCl) and N,N‐dimethylacetamide (DMAc) was used, and the effects of (i) temperature of the collector, (ii) type of collector (aluminum mesh and cellulose filter media), and (iii) postspinning treatment, such as coagulation with water, on the morphology of electrospun fibers were investigated. The scanning electron microscopy (SEM) and X‐ray diffraction studies of as‐spun fibers at room temperature reveal that the morphology of cellulose fibers evolves with time due to moisture absorption and swelling caused by the residual salt and solvent. Although heating the collector greatly enhances the stability of the fiber morphology, the removal of salt by coagulation and DMAc by heating the collector was necessary for the fabrication of dry and stable cellulose fibers with limited moisture absorption and swelling. The presence and removal of the salt before and after coagulation have been identified by electron microprobe and X‐ray diffraction studies. When cellulose filter media is used as a collector, dry and stable fibers were obtained without the coagulation step, and the resulting electrospun fibers exhibit good adhesion to the filter media. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 1673–1683, 2005  相似文献   

10.
Dendritic and network PANI fibers with controlled diameters from nanosize to sub-micrometer-size were prepared at room temperature. Conducting polyaniline (PANI)/silica composite fibers were synthesized via a sol-gel progress thereafter. Structural characterization was performed using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). FT-IR and UV-vis were used to verify the incorporation of the silica.  相似文献   

11.
海藻酸锌纤维热降解法制备氧化锌纳米结构   总被引:1,自引:0,他引:1  
采用天然高分子海藻酸钠为原料, 以氯化锌水溶液为凝固浴, 通过湿法纺丝技术成功制备了海藻酸锌(Alg-Zn)纤维.通过在空气中不同温度下对所得海藻酸锌纤维进行热处理, 得到了多种ZnO纳米结构. 利用热失重分析(TG)、X射线衍射(XRD)、电子能量损失谱(EELS)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)和高分辨透射电子显微镜(HRTEM)等手段对产物的组成、形貌和微观结构进行了详细表征. 结果表明, 焙烧温度和时间对所得ZnO纳米结构的尺寸和形貌具有重要影响; 800 ℃下热处理24 h以上可以得到直径约为120 nm的ZnO纳米棒. 通过仔细考察不同热处理时间得到的ZnO纳米结构, 提出了在焙烧条件下ZnO纳米棒的生长机理.  相似文献   

12.
Polystyrene (PS) fibers with core-shell structure were prepared by coaxial electrostatic spinning using liquid epoxy or curing agent as the core and PS solution as the shell. Scratch self-healing coatings were realized by using the healant-loaded core-shell fibers in the matrix.  相似文献   

13.
The catalytic CVD synthesis, using propyne as carbon precursor and Fe(NO3)3 as catalyst precursor inside porous alumina, gives carbon nanotube (CNT) bags in a well-arranged two-dimensional order. The tubes have the morphology of bags or fibers, since they are completely filled with smaller helicoidal CNTs. This morphology has so far not been reported for CNTs. Owing to the dense filling of the outer mother CNTs with small helicoidal CNTs, the resulting CNT fibers appear to be stiff and show no sign of inflation, as sometimes observed with hollow CNTs. The fiber morphology was observed by raster electron microscopy (REM), transmission electron microscopy (TEM), and atomic force microscopy (AFM). The carbon material is graphitic as deduced from spectroscopic studies (X-ray diffraction, Raman and electron energy-loss spectroscopy (EELS)). From M?ssbauer studies, the presence of two different oxidation states (Fe0 and FeIII) of the catalyst is proven. Geometric structuring of the template by two different methods has been studied. Inkjet catalyst printing shows that the tubes can be arranged in defined areas by a simple and easily applied technique. Laser-structuring creates grooves of nanotube fibers embedded in the alumina host. This allows the formation of defined architectures in the microm range. Results on hydrogen absorption and field emission properties of the CNT fibers are reported.  相似文献   

14.

The graft copolymerization of methyl methacrylate (MMA) onto commercial acrylic fibers (PAN) has been studied using Azobis(isobutyro)nitrile (AIBN) as an initiator. MMA grafting initiated by radicals formed from thermal decomposition of AIBN. In this study, the effects of monomer and initiator concentration, time and temperature reaction on the grafting yield have been investigated.

The optimum conditions for this grafting reaction were obtained with an MMA concentration of 0.7 M, an AIBN concentration of 0.0073 M, a reaction temperature of T=85°C and with a 60 min reaction time.

The fiber structure has been investigated by different experimental techniques of characterization such as Fourier transform infrared spectroscopy (FT‐IR), calorimetric analysis (DSC), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), water absorption and the physical and mechanical properties has also been investigated in this study. The thermal analysis data showed that by increasing grafting yield, little changes have occurred in fibers samples up to 13.5% of grafting yield and the thermal transitions of grafted fibers have approximately the same behavior compared with the raw fibers sample. Grafting also slightly affected the fiber morphology. The experimental data of mechanical properties clearly show that by increasing grafting yield, max extension will decrease but this change up to 13.5% grafting yield is barely noticeable. Grafting of poly MMA improved water absorption.  相似文献   

15.
In this study, carbon fibers with different morphologies in their initial growth period have been obtained by the chemical vapor deposition using nano-copper particles as a catalyst at 250°C and then we have investigated the formation mechanism of the carbon fibers. Otherwise, we have noted that multi-branched carbon fibers with different morphologies were synthesized, and proposed the growth models for carbon fibers. X-ray diffraction, field emission scanning electron microscopy, transmission electron microscope, energy-dispersive x-ray were used to characterize the products.  相似文献   

16.
A family of new uridine phosphocholine amphiphiles that were prepared using a convenient four-step synthetic route is described. Physicochemical studies (differential scanning calorimetry, small-angle X-ray scattering, UV-vis and circular dichroism spectroscopies, light microscopy, transmission electronic microscopy, and scanning electron microscopy) show that these amphiphiles spontaneously assemble into supramolecular structures including vesicles, fibers, hydrogels, and organogels. In aqueous solution, the amphiphiles possessing saturated alkyl chains self-assemble into DNA-like helical fibers in the crystalline state below T(m) and compact bilayers above the melting temperature (T(m)). The transition from bilayers to fibers is thermally reversible. Above a threshold concentration (>6% w/w), a hydrogel is formed due to an entangled network of the fibers. A therapeutic agent such as DNA can be entrapped within the hydrogel structure. In addition to forming bilayer vesicles and hydrogels in aqueous solution, these nucleoside amphiphiles also form organogels in cyclohexane above T(m). Scanning electron microscopy shows a continuous multilamellar phase in the organogels.  相似文献   

17.
We have investigated the effect of titanium dioxide as a durable finish on the flammability and photocatalytic self-cleaning of cellulosic fabric. Nano-sized titanium dioxide particles were successfully synthesized and deposited onto cellulosic fibers with good compatibility, significant photocatalytic self-cleaning activity, and flame-retardancy properties using the sol–gel process at low temperature. The photocatalytic activity was tested by measuring the photodegradation of methylene blue under ultraviolet–visible illumination, and also flame-retardancy effect was tested by flammability tester. The samples have been characterized by several techniques such as scanning electron microscopy, transmission electron microscopy, diffuse reflectance spectroscopy, X-ray diffraction, and thermogravimetric analysis. The titanium dioxide nanoparticles with 10–20 nm in size have been found to form a homogeneous thin film on the fiber surface which shows efficient photocatalytic and flame-retardancy properties. This preparation technique can also be applied to new fabrics to create self-cleaning and flame-retardancy properties in them.  相似文献   

18.
以聚乙烯吡咯烷酮(PVP)溶胶/钛酸正丁酯为前躯体,以静电纺丝法制备了PVP/Ti(OC4H9)4纤维。550℃下,空气氛中焙烧双组分纤维,得到直径60~300nm的TiO2纳米纤维。继而以气相沉积法制得碳包覆TiO2纳米纤维。用红外吸收光谱(FTIR)、X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)等对纳米纤维进行了表征。与TiO2纳米纤维、TiO2纳米粉体相比,气相沉积法制备的碳包覆TiO2纳米纤维在光分解亚甲基蓝上表现出更好的催化性能。  相似文献   

19.
Cellulose nanofibers from white and naturally colored cotton fibers   总被引:1,自引:1,他引:0  
Suspensions of white and colored nanofibers were obtained by the acid hydrolysis of white and naturally colored cotton fibers. Possible differences among them in morphology and other characteristics were investigated. The original fibers were subjected to chemical analysis (cellulose, lignin and hemicellulose content), X-ray diffraction (XRD) analysis, and scanning electron microscopy (SEM). The nanofibers were analyzed with respect to yield, elemental composition (to assess the presence of sulfur), zeta potential, morphology (by scanning transmission electron microscopy (STEM)) and atomic force microscopy (AFM), crystallinity (XRD) and thermal stability by thermogravimetric analysis in air under dynamic and isothermal temperature conditions. Morphological study of several cotton nanofibers showed a length of 85–225 nm and diameter of 6–18 nm. The micrographs also indicated that there were no significant morphological differences among the nanostructures from different cotton fibers. The main differences found were the slightly higher yield, sulfonation effectiveness and thermal stability under dynamic temperature conditions of the white nanofiber. On the other hand, in isothermal conditions at 180 °C, the colored nanofibers showed a better thermal stability than the white.  相似文献   

20.
酚醛基电纺纤维的制备和分散形态研究   总被引:1,自引:0,他引:1  
用电纺技术制备了酚醛纤维及碳纤维.用合成的甲阶酚醛(A-stage resol)和聚乙烯醇(PVA)在不同配比下进行电纺,然后经150℃固化处理1h,制得酚醛(PF)纤维.将PF和PVA质量比为1∶2的酚醛纤维在不同的温度下进行热处理,得到的纤维直径均小于200nm.用场发射扫描电镜(FESEM)观察并比较了纤维的直径和分散形态.用红外光谱(IR)证实了,在600℃下热处理后的酚醛纤维为碳纤维,分散形态最为理想.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号