首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A supported liquid membrane system has been developed for the extraction of vanillin from food samples. A porous PTFE membrane is impregnated with an organic solvent, which forms a barrier between two aqueous phases. The analyte is extracted from a donor phase into the hydrophobic membrane and then back extracted into a second aqueous solution, the acceptor. The determination (100–1400 μg ml−1 vanillin) was performed using a PVC-graphite composite electrode versus Ag/AgCl/3MKCl at +0.850 V placed in a wall-jet flow cell as amperometric detector. The solid sample is directly placed in the membrane unit without any treatment, and the analyte was extracted from the sample, passes through the membrane and conduced to the flow cell by the acceptor stream. The limit of detection (3σ) was 44 μg ml−1. The method was applied to the determination of vanillin (9–606 μg g−1) in food samples.  相似文献   

2.
A simple and inexpensive method for the determination of ciprofloxacin has been developed using solid-phase spectrophotometry. The intrinsic absorbance of ciprofloxacin fixed on a dextran-type cation-exchange resin, Sephadex SP C-25, was measured directly at 277 and 380 nm after packing the gel beads in a 1-mm cell. Using a sample volume of 10 ml, the calibration graph was linear over the range 0.05-0.3 μg ml−1 with a R.S.D. of 1.11% (n=8). The sensitivity obtained is 40 times higher than that of the corresponding solution method. The method was applied to the determination of ciprofloxacin in pharmaceutical preparations and was validated by standard addition.  相似文献   

3.
This article described a novel amperometry which can be used for determination of purine derivatives including uric acid, xanthine, hypoxanthine, guanine, and adenine without surface contamination. By applying a constant potential of −0.125 V (vs. Ag/AgCl) in a flow injection system, the chelating capability of these purine derivatives converts the cuprous oxide layer into a soluble complex. This behavior would dissolve the passive oxide layer and expose the bottom copper layer to the solution, subsequently; an oxidation current which attributed to the regeneration of the original cuprous oxide layer is used to reflect the concentration of these purine derivatives. In a 50 mM phosphate buffer, pH 7.0, this approach provides a high sensitivity with LOQ of sub-micro molar level of five purines and high stability with a RSD of 2.5% for 10 μM xanthine (N = 12). This method does not suffer from most biological species including ascorbic acid, acetaminophen, creatine, dopamine, sarcosine, ammonium ion, chloride ion, and urea at equal or higher than its physiological concentration.  相似文献   

4.
Tormin TF  Gimenes DT  Richter EM  Munoz RA 《Talanta》2011,85(3):1274-1278
We report here, for the first time, application of batch injection analysis (BIA) with amperometric detection for determination of the phenolic antioxidant butylated hydroxyanisole (BHA) in biodiesel. A sample plug was directly injected onto a boron-doped diamond electrode immersed in 50% v/v hydroethanolic solution with 0.1 mol L−1 HClO4 using an electronic micropipette. Importantly, the only preparation step required for biodiesel analysis is dilution in the same hydroethanolic electrolyte solution. Our proposed method has several advantages for routine biodiesel analysis, including: a low relative standard deviation between injections (0.29%, n = 20), high analytical frequency (120 h−1), adequate recovery values (93-101%) for spiked samples, satisfactory accuracy (based on comparative determinations by high-performance liquid-chromatography), and a low detection limit (100 ng of BHA per g of biodiesel). Finally, our method can be adapted for the determination of other antioxidants in biodiesel samples.  相似文献   

5.
《Electroanalysis》2018,30(8):1880-1885
This work presents a simple and low‐cost method for fast and selective determination of Verapamil (VP) in tablets and human urine samples using a boron‐doped diamond working electrode (BDD) coupled to a flow injection analysis system with multiple pulse amperometric detection (FIA‐MPA). The electrochemical behaviour of VP in 0.1 mol L−1 sulfuric acid showed three merged oxidation peaks at around +1.4 V and upon reverse scan, one reduction peak at 0.0 V (vs. Ag/AgCl). The MPA detection was performed applying a sequence of three potential pulses on BDD electrode: (1) at +1.6 V for VP oxidation, (2) at +0.2 V for reduction of the oxidized product and (3) at +0.1 V for cleaning of the working electrode surface. The FIA system was optimized with injection volume of 150 μL and flow rate of 3.5 mL min−1. The method showed a linear range from 0.8 to 40.0 μmol L−1 (R>0.99) with a low limit of detection of 0.16 μmol L−1, good repeatability (RSD<2.2 %; n=10) and sample throughput (45 h−1). Selective determination of VP in urine was performed at+0.2 V due to absence of interference from ascorbic and uric acids in this potential. The addition‐recovery tests in both samples were close to 100 % and the results were similar to an official method.  相似文献   

6.
Abstract

The sorption of pentachlorophenol (PCP) onto the aquatic humic matter (HM) for very wide concentration range (60 ng PCP/L - 1 mg PCP/L) was investigated. The binding affinity increased significantly with the acidity of the solution. The dissolved organic carbon (DOC) normalized sorption coefficients (log KOC) of PCP were 3.39 at pH 3, 3.19 at pH 5.5 and 3.01 at pH 7. The binding of PCP took place via a two step binding mechanism: the rapid first step was followed by a second much slower one indicating that the surface of the HM is very heterogeneous containing binding sites with different binding affinities. It was possible to obtain a “fully saturated” HM-PCP adduct (also all possible micro-voids of the HM were occupied) in a very high PCP concentration. The log KOC value for the whole concentration range was slightly smaller than that obtained under very low PCP concentration level. The Langmuir isotherm was the most suitable for the whole concentration range of PCP, whereas the Freundlich model was the most suitable for the low concentration range of PCP. The dissimilarities between different sorption models were as a whole marginal and thus it is possible without significant loss of information to describe the PCP sorption with a linear model. The results verify that the conventional humic (HA) and fulvic (FA) acid type humic solutes of fresh waters account for the main part of the PCP sorption.  相似文献   

7.
An amperometric enzyme electrode incorporating horseradish peroxidase is described for the determination of hydrogen peroxide in organic solvents. The enzyme was co-adsorbed with an electron mediator, potassium hexacyanoferrate(II), on the surface of a graphite foil electrode, making reagentless measurement possible. The electrochemical reduction of the enzymatically oxidized mediator was utilized as the analytical signal. Studies in different solvent systems revealed that the electrode could be operated in dioxane, chloroform and chlorobenzene, the last two providing approximately double the sensitivity of the former. The presence of a small amount of aqueous buffer was essential for sensor activity. During 2 weeks of intermittent use, the sensitivity of the electrode decreased to 40% of its initial value. At least 50 assays could be performed with a single sensor.  相似文献   

8.
9.
H. B. Li  F. Chen 《Chromatographia》2001,54(3-4):270-273
Summary A novel method for the simultaneous determination of twelve water- and fat-soluble vitamins has been established by high-performance liquid chromatography with diode array detection. The vitamins were analyzed on a μBondapak C18 column (300 × 3.9 mm, 10 μm) with methanol-KH2PO4 buffer (0.1 M, pH 7.0)-water as mobile phase in a gradient. The linearity of calibration graphs was compound-dependent and the detection limits ranged from 0.02 μg mL−1 to 0.5 μg mL−1. The method was successfully applied to determine vitamins in pharmaceutical preparations. The recoveries were from 95.1% to 103% and the relative standard deviations were in the range of 0.9% to 4.5%.  相似文献   

10.
We describe a simple and easy way to construct gold microelectrodes for amperometric detection in capillary electrophoresis (CE). The gold microelectrodes, in single or twin sets, were obtained from recordable compact discs (gold-sputtered type), which present highly reproducible surface characteristics. The performance of these electrodes was evaluated by using a home-made CE equipment. The basic steps for the electrode construction are: drawing on a microcomputer; laser printing of the design on wax paper; heat-transfer of the toner onto the gold surface of a peeled recordable compact disc (CD-R); etching of the gold layer from unprinted regions; removal of the toner with a solvent; sealing of unused electrode areas with varnish. One electrode at a time was connected to a potentiostat (or two, to a bipotentiostat) and operated in a wall jet configuration relative to the CE capillary outlet. The amperometric signals were integrated for quantification purposes. Repetitive injections (n = 10) of a mixture containing iodide, ascorbic acid, dipyrone, and acetaminophen (20, 200, 500, and 100 microM), presented relative standard deviations of 2.9, 4.5, 6.1, and 4.0%, respectively. For these analytes, the detection limits (S/N = 3, 30 s of 100 mm hydrodynamic injection) were 0.1, 0.5, 3.1, and 1.1 microM, respectively.  相似文献   

11.
Ghanim MH  Abdullah MZ 《Talanta》2011,85(1):28-34
Recent advances in microfluidic systems, particularly in the Micro Total Analysis System (μTAS) or Lab On a Chip (LOC), drive the current analysis tools and equipment towards miniaturization, rapid at-line testing and mobility. The state-of-the-art microfluidic technology targets a wider range but smaller volumes of analytes, making the analytical procedure relatively easier and faster. This trend together with faster electronics and modern instrumentation systems will make real-time and in situ analysis a definite possibility. This review focuses on microchip capillary electrophoresis with amperometric detection (MCE-AD) for the detection of DNA and other electroactive analytes. The problems associated with the microchip design, in particular the choice of materials and the configuration of electrodes are discussed thoroughly and solutions are proposed. Significant developments in the related areas are also covered and reviewed critically.  相似文献   

12.
《Electroanalysis》2003,15(2):133-138
The preparation of a biosensor based on the enzymatic immobilization in polypyrrole polymer for the detection of antidepressant drugs is described. The enzyme monoamine oxidase (MAO) was immobilized by electropolymerization of pyrrole around a platinum electrode, at a constant potential of +0.75 V (vs. Ag/AgCl) in such a way to obtain a membrane thickness, which was constant and equal to 100 mC/cm2. The biosensor was obtained from a 0.1 M KCl saline solution containing pyrrole at a concentration equal to 0.4 M and 2.5 mU/mL of MAO. The biosensor was adapted to a continuous flow injection analysis system (FIA) with the amperometric detection of hydrogen peroxide produced by enzymatic reaction carried out at a potential of +0.7 V (vs. Ag/AgCl), pH 7.4 and temperature of 37 °C. In optimized flow conditions, the biosensor presented an analytical response for fluoxetine in the interval between 0.67 and 4.33 mM, with a detection limit of 0.10 mM. The analytical use of the biosensor developed was evaluated through analysis of commercial pharmaceutical products containing fluoxetine, available on the Portuguese market. The amperometric flow results obtained do not differ significantly from the values resulting from analysis of the same products by the method proposed by the US Pharmacopeia, with sampling rates of 20–25 samples/hour.  相似文献   

13.
A sensitive electrochemical procedure based on reduction of secnidazole (I), tinidazole (II) and ornidazole (III) at a glassy carbon electrode (GCE) was introduced. A study of the variation of the peak current with solution variables such as pH, ionic strength, concentration of drugs, possible interference, and instrumental variables such as scan rate, pulse amplitude, preconcentration time, accumulation potential, has resulted in the optimization of the reduction signal for analytical purposes. Linear calibration plots were obtained over the concentration ranges of 50–800, 50–750 μg mL?1 for I, and both (II, III) respectively, in Britton–Robinson buffer of pH 7. The relative standard deviations of five replicate measurements of 1.0 and 10.0 μg mL?1 of I, II and III concentrations were 4.7%, 4.9% and 5.3%, and 2.2%, 2.6% and 2.8%, respectively. The limits of detection (LOD) for I, II and III were found to be 2 × 10?10, 3 × 10?10 and 2.5 × 10?10 mol L?1 and limits of quantification (LOQ) for I, II and III were found to be 4.0 × 10?8, 1.2 × 10?8 and 4.4 × 10?8 mol L?1, respectively. The optimal conditions were: Eacc = ?0.9 V, tacc = 30 s, scan rate = 20 mV s?1, pulse-height = 90 mV and Britton–Robinson buffer of pH 7. The method was applied for the determination of the cited drugs both in raw materials and in pharmaceutical preparations with satisfactory results and compared with the official reference method. Complete validation of the proposed method was also done.  相似文献   

14.
A novel plant tissue-based bioelectrode obtained by incorporating sunflower (Helianthus annuus L.) leaves tissue as a source of glycolate oxidase and peroxidase into a ferrocene-mediated carbon paste electrode for the determination of glycolic acid was developed. It was coupled with the flow-injection (FI) system and used as the basis to develop a novel FI amperometric procedure for glycolic acid determination. The flow-injection amperometric measurements were performed by injecting aliquot of glycolic acid solution into the flowing stream of 0.05 mol L−1 of phosphate buffer solution having pH 8.0 with a flow rate of 0.3 mL min−1. The bioelectrode consisted of 20% (w/w) of sunflower leaves tissue and 5% (w/w) of ferrocene at 0.00 V (vs Ag/AgCl). The bioelectrode exhibited a linear response from 1.0 × 10−6 up to 2.0 × 10−3 mol L−1 glycolic acid with a detection limit (S/N = 3) and a quantitation limit (S/N = 10) of 1 × 10−6 and 3.3 × 10−6 mol L−1, respectively. The sampling rate of 12 h−1 and a relative standard deviation of 1.67% (n = 15) were achieved. The bioelectrode response decreased to 70% of the original value within 90 continuous injections. The proposed bioelectrode was satisfactorily applied to glycolic acid determination in human urine samples after appropriate sample pretreatment. Results obtained by the FI method were compared favorably with those obtained by HPLC. It offers advantages, which included rapidity, high activity, limited stability, ease of preparation and low cost.  相似文献   

15.
We have developed a reversed-phase high-performance liquid chromatography pulsed amperometric detection (RP-HPLC-PAD) method for the determination of glycosides. It is sensitive, repeatable, and selective without the pretreatment step. Ginsenosides were separated completely in 50 min using an water-acetonitrile gradient as the eluent and detected by PAD under NaOH alkaline conditions. The ginsenoside detection limit (S/N=3) was 0.02-0.07 ng and the quantification limit (S/N=10) was 0.1-0.2 ng. The coefficient of linear regression was 0.9984-0.9998 for concentrations between 1 and 50 microg/mL. The intra- and inter-day precision (RSD) was less than 6.35% in Ginseng Radix and Shy-jiun-tzyy-tang extracts. The average recoveries from Ginseng Radix and Shy-jiun-tzyy-tang extracts were 98.19-105.45% and 96.89-102.22%, respectively.  相似文献   

16.
The paper describes a rapid and simple method for the evaluation of the antioxidant capacity in oil in water nanoemulsion. This procedure does not require extensive sample treatment and, most important, does not use any organic solvent for dissolution of the fatty matrix. The nanoemulsions were directly injected in a flow injection (FI) system with an electrochemical detector equipped with a glassy carbon working electrode operating amperometrically at a potential of +0.8 V (vs. Ag/AgCl). Results obtained were compared with those obtained by the Oxygen Radical Absorbance Capacity (ORAC) assay.  相似文献   

17.
An amperometric immunosensor, based on a non-competitive sandwich assay and flow injection analysis (FIA), was developed for the detection of human red blood cells (RBCs). A dual working electrode, on which specific IgM and nonspecific IgM were chemically immobilised to form sensing and blank electrodes, respectively, was employed to determine the binding of specific blood cells and non-specific adsorption in one determination. Horseradish peroxidase (HRP)-labelled antiblood group A IgM was used in the assay. Sensor preparation involved chemical immobilisation of the IgMs on glassy carbon electrodes using l-ethyl-3(3-dimethyl aminopropyl)carbodiimide (EDC) as a coupling reagent in the presence of N-hydroxysuccinimide (NHS). The interference contributions, such as the non-specific adsorption of the enzyme conjugate and the blood cells, were determined and removed. A quantitative relationship between the cell binding response and its concentration was obtained in the region 1 − 30 × 108 cells ml−1.  相似文献   

18.
Summary A capillary electrophoretic method for the determination of lansoprazole in pharmaceutical preparations is described. The analysis was performed in a fused silica capillary using 20 mM borate buffer at pH 8.7 as a background electrolyte. The best resolution was obtained by applying a potential of 30 kV and vacuum injection of 1 s. Detection was made at 200 nm. Phenobarbital sodium was a good internal standard and the migration times were 4.1±0.2 min (lansoprazole) and 5.7±0.2 min (phenobarbital sodium). A well-correlated calibration equation was found in the range of 1.12×10−5 and 2.24×10−4 M. Limit of detection (LOD) and limit of quantitation (LOQ) were 1.4×10−6 M (RSD 1.44%) and 4.42×10−6 M (RSD 1.49%), respectively. The method was validated and applied to the capsules containing enteric coated pellets of lansoprazole. The results of the proposed method were compared those of UV spectrophotometry. Insignificant differences were found between the two methods at the 95% probability level. The described CE method is selective, rapid, sensitive and accurate for the analysis of lansoprazole in quality control laboratories.  相似文献   

19.
运用原子吸收法间接测定了呋喃唑酮片剂中的呋喃唑酮。方法基于呋喃唑酮在N,N-二甲基甲酰胺(DMF)与乙醇的混合溶剂中与Zn-NH4Cl反应生成胲,胲与Tollens试剂按1:2的关系反应生成单质Ag沉淀,通过测定上清液中剩余Ag的原子吸收光度来间接测定呋喃唑酮。已用于呋喃唑酮片剂中呋喃唑酮的测定。  相似文献   

20.
In this article, we have demonstrated the feasibility of using dye binding interactions for the amperometric detection of proteins at conducting polymer coated electrodes with flow injection analysis. Incorporation of appropriate dyes into the conducting polymer during synthesis enables sensitive and selective responses to be obtained. The effects of eluent pH and applied potential on the responses obtained for a range of proteins have been investigated. These parameters can be used to modify selectivity and achieve sensitivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号