首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A sensitive optode consisting of highly lead-selective ionophore (Lead IV), proton-selective chromoionophore (ETH 5294) and lipophilic anionic sites (KTpClPB) in plasticized polyvinyl chloride (PVC) membrane was fabricated. The optode membranes were used for determination of Pb2+ by absorption spectrophotometry in batch and flow-through systems. The influence parameters such as pH, type of buffer solution, response time and concentration of regenerating solution were optimized. The membrane responded to Pb2+ by changing its color from blue to pinkish purple in Tris buffer containing different concentration of Pb2+ at pH 7.0. The optode provided the response range of 3.16 × 10−8 to 5.00 × 10−5 mol L−1 Pb2+ with the detection limit of 2.49 × 10−8 mol L−1 in the batch system within the response time of 30 min. The dynamic range of 1.26 × 10−8 to 3.16 × 10−5 mol L−1 Pb2+ with detection limit of 8.97 × 10−9 mol L−1 were obtained in the flow-through system within the response time of 15 min. Moreover, the proposed optode sensors showed good selectivity towards Pb2+ over Na+, K+, Mg2+, Cd2+, Hg2+ and Ag+. It was successfully applied to determine Pb2+ in real water samples and the results were compared with well-established inductively coupled plasma optical emission spectrometry (ICP-OES). No significant different value (tcritical = 4.30 > texp = 1.00-3.42, n = 3 at 95% of confidence level) was found.  相似文献   

2.
A multi-wall carbon nanotube (MWNT) modified glassy carbon electrode (GCE) was described for the simultaneous determination of trace levels of cadmium and lead by anodic stripping voltammetry (ASV). In pH 4.5 NaAc-HAc buffer containing 0.02 mol/l KI, Cd2+ and Pb2+ first adsorb onto the surface of a MWNT film coated GCE and then reduce at −1.20 V. During the positive potential sweep, reduced cadmium and lead were oxidized, and two well-defined stripping peaks appeared at −0.88 and −0.62 V. Compared with a bare GCE, a MWNT film coated GCE greatly improves the sensitivity of determining cadmium and lead. Low concentration of I significantly enhances the stripping peak currents since it induces Cd2+ and Pb2+ to adsorb at the electrode surface. The striping peak currents change linearly with the concentration of Cd2+ from 2.5×10−8 to 1×10−5 mol/l and with that of Pb2+ from 2×10−8 to 1×10−5 mol/l. The lowest detectable concentrations of Cd2+ and Pb2+ are estimated to be 6×10−9 and 4×10−9 mol/l, respectively. The high sensitivity, selectivity, and stability of this MWNT film coated electrode demonstrated its practical application for a simple, rapid and economical determination of trace levels of Cd2+ and Pb2+ in water samples.  相似文献   

3.
Yuan S  Chen W  Hu S 《Talanta》2004,64(4):922-928
An anthraquinone (AQ) improved Na-montmorillonite nanoparticles (nano-SWy-2) chemically modified electrode (CME) has been developed for the simultaneous determination of trace levels of cadmium (II) and lead (II) by differential pulse anodic stripping voltammetry (DPASV). This method is based on a non-electrolytic preconcentration via ion exchange model, followed by an accumulation period via the complex formation in the reduction stage at −1.2 V, and then by an anodic stripping process. The mechanism of this design was proposed and the analytical performance was evaluated with several variables. Under the optimized working conditions, the detection limit was 3 and 1 nM for Cd2+ and Pb2+, respectively. The calibration graphs were linear in the concentration ranges of 8×10−9 to 1×10−6 mol L−1 (Cd2+) and of 2×10−9 to 1×10−6 mol L−1 (Pb2+). Many inorganic species did not interfere with the assay significantly; the high sensitivity, selectivity, and stability of this nano-SWy-2-AQ CME were demonstrated. The applications for the detection of trace levels of Cd2+ and Pb2+ in milk powder and lake water samples indicate that it is an economical and potent method.  相似文献   

4.
Zhang L  Li W  Shi M  Kong J 《Talanta》2006,70(2):432-436
A novel film modified electrode for the determination of trace lead was developed in this work. The modified electrode was prepared by the electropolymerization of N,N′-(o-phenylene)-bis-benzenesulfonamide (PBSA) as the ion capturing reagent to create the functional film. The modified electrode shows a high selectivity towards Pb2+ over interfering cations, e.g. Cu2+, Cd2+, Co2+, Ni2+, Zn2+, Cr2+, and the calibration curve was linear in the concentration range of 2.0 × 10−9 to 1.0 × 10−7 M with correlation coefficient of 0.999. For 20 min accumulation, detection limit of 1.0 × 10−9 M was obtained at the signal to noise ratio of 3. Analytical availability of the modified electrode was demonstrated by the application for samples from pond water.  相似文献   

5.
A series of crown ethers carrying an anthracene group with nitrogen–sulfur donor atom, which differ in having three, four and five sulfur atoms in the macrocycle was designed and synthesized by the reaction of the corresponding macrocyclic compound and 9-chloromethyl-anthracene. The influence of metal cations such as Al3+, Zn2+, Fe2+, Fe3+, Co2+, Ni2+, Mn2+, Cu2+, Cd2+, Hg2+ and Pb2+ on the spectroscopic properties of the ligands was investigated in acetonitrile–dichloromethane (1:1) by means of absorption and emission spectrometry. Absorption spectra show isosbestic points in the spectrophotometric titration of Al3+, Zn2+, Fe2+, Fe3+, Cu2+, Hg2+ and Pb2+ the results of which disclosed the complexation compositions and complex stability constants of the novel ligands with these cations. The monoazapentathia crown ether showed sensitivity for Al3+ with linear range and detection limit of 2.6 × 10−6 M–2.6 × 10−5 M and 8.1 × 10−7 M, respectively.  相似文献   

6.
The present paper has focused on the potential application of the bifunctional polydopamine@Fe3O4 core–shell nanoparticles for development of a simple, stable and highly selective electrochemical method for metal ions monitoring in real samples. The electrochemical method is based on electrochemical preconcentration/reduction of metal ions onto a polydopamine@Fe3O4 modified magnetic glassy carbon electrode at −1.1 V (versus SCE) in 0.1 M pH 5.0 acetate solution containing Pb2+ and Cd2+ during 160 s, followed by subsequent anodic stripping. The proposed method has been demonstrated highly selective and sensitive detection of Pb2+ and Cd2+, with the calculated detection limits of 1.4 × 10−11 M and 9.2 × 10−11 M. Under the optimized conditions, the square wave anodic stripping voltammetry response of the modified electrode to Pb2+ (or Cd2+) shows a linear concentration range of 5.0–600 nM (or 20–590 nM) with a correlation coefficient of 0.997 (or 0.994). Further, the proposed method has been performed to successfully detect Pb2+ and Cd2+ in aqueous effluent.  相似文献   

7.
Hydrogen evolution bothers stripping analysis significantly. Dioctyl phthalate-based carbon paste electrode exhibits extremely wide cathodic potential window. It is explored as a powerful substrate electrode to solve the problem of hydrogen evolution and further improve reproducibility for stripping analysis using bismuth-coated electrodes for the first time. It was successfully applied to the simultaneous determination of Zn2+, Cd2+, and Pb2+. Linear responses are obtained for Zn2+ in the range of 10–100 μg L−1 and for Pb2+ and Cd2+ in the range of 5–100 μg L−1. The detection limits for Zn2+, Cd2+, and Pb2+ are 0.1 μg L−1, 0.22 μg L−1 and 0.44 μg L−1, respectively. The method has been successfully applied to the determination of Zn2+, Cd2+, and Pb2+ in waste water samples. The detection strategy based on the combination of dioctyl phthalate-based carbon paste electrode and bismuth-coated electrodes holds great promise for stripping analysis.  相似文献   

8.
Zhen Fang 《Tetrahedron letters》2008,49(14):2311-2315
A cationic 5,15-(p-(9,9-bis(6-trimethylammoniumhexyl)fluorenylethynyl)phenyl)porphyrin tetrabromide was synthesized and the self-assembled films were used for Hg2+ detection in aqueous media. The detection response is based on fluorescence quenching of the porphyrin molecule upon coordination with Hg2+. The detection shows high selectivity for Hg2+ over Cu2+, Zn2+, Pb2+, Cd2+, Mn2+, Ni2+, Co2+ and Ca2+. A linear response toward Hg2+ in a concentration range of 1 × 10−10-1 × 10−6 M was observed for the film with a detection limit of 0.1 nM. The cationic porphyrin film shows higher stability and significant improvement in detection sensitivity, as compared to other porphyrin-based sensors. The amphiphilic cationic nature of the porphyrin synthesized also allows for the direct deposition of a porphyrin layer on a bare glass surface through self-assembly.  相似文献   

9.
A novel fluorometric sensor bearing three dansyl moieties based on tris[2-(2-aminoethylthio)ethyl]amine was prepared by a simple approach using a conventional two-step synthesis. The sensor exhibits highly Hg2+-selective ON-OFF fluorescence quenching behavior in aqueous acetonitrile solutions and is shown to discriminate various competing metal ions, particularly Cu2+, Ag+, and Pb2+ as well as Ca2+, Cd2+, Co2+, Fe3+, Mn2+, Na+, Ni2+, and Zn2+, with a detection limit of 1.15 × 10−7 M or 23 ppb.  相似文献   

10.
A rapid and reliable capillary zone electrophoresis method for the determination of inorganic cations was developed. The complete separation of K+, Ba2+, Ca2+, Na+, Mg2+, Mn2+, Ni2+, Cd2+, Li+ and Cu2+ can be achieved in 4 min with a simple electrolyte composed by 10 mM imidazole as the carrier buffer and background absorbance provider and acetic acid as the complexing agent (pH 3.60). Injection was performed hydrostatically by elevating the sample at 10 cm for 30 s. The running voltage was +25 kV at room temperature. Indirect UV-absorption detection was achieved at 185 nm. The detection limit was in the range between 0.06 mg/l (Mg2+) and 0.57 mg/l (K+) and the quantification limits ranged from 0.10 mg/l (Ni2+) to 0.80 mg/l (Cu2+). The calibration graphs were linear in the concentration range from the quantification limit till at least 1 g/l in K+, 10 mg/l in Ba2+, Ca2+, Mg2+, Mn2+, Ni2+ and Cd2+, 40 mg/l in Na+ and 12 mg/l in Li+ and Cu2+. The repeatability, intraday and interday analysis were ≤1.55% and ≤3.64% for migration time and ≤3.38% and ≤3.63% for peak area. The method developed has been applied to several beverage samples with only a simple dilution and filtration treatment of the sample. The proposed method is simple, fast, cheap and it is achieved with common products in either laboratory. For these reasons, it is a very useful method for routine analysis.  相似文献   

11.
In order to explore the reuse properties of oxidized chelating resin containing sulfur after adsorption, two kinds of novel chelating resins, poly[4-vinylbenzyl-(2-hydroxyethyl)] sulfoxide (PVBSO) and poly[4-vinylbenzyl-(2-hydroxyethyl)] sulfone (PVBSO2), were synthesized using poly[4-vinylbenzyl-(2-hydroxyethyl)] sulfide (PVBS) as material. Their structures were confirmed by FTIR and XPS. The adsorption properties and mechanism for metal ions such as Au3+, Pt4+, Pd2+, Hg2+, Cu2+, Ni2+, Fe3+, Pb2+, Cd2+, and Zn2+ were investigated. Experimental results showed that PVBSO had good adsorption and selective properties for Au3+, Pd2+ and Cu2+ when the coexisting ion was Pt4+, Ni2+, Pb2+ or Cd2+. In the aqueous system containing Cu2+ and Pb2+ or Cu2+ and Cd2+, PVBSO2 only adsorbed Cu2+. The selective coefficients of PVBSO and PVBSO2 were αAu/Pt = 4.8, αAu/Pd = 11.8, αPd/Pt = 10.9, αCu/Ni = 2.5, αCu/Cd = 41.2, αCu/Pb = ∞, αCu/Ni = 3.0, αCu/Cd = ∞, αCu/Pb = ∞, respectively.  相似文献   

12.
A method was developed for the analysis of four aliphatic diamines by capillary zone electrophoresis using pre-column derivatization with naphthalene-2,3-dicarboxaldehyde (NDA)/CN and amperometric detection. The pre-column derivatization reaction conditions including the molar ratio of NDA to amines, the cyanide concentration, the pH value of derivatization buffer, and the reaction time, were investigated. The separation of four derivatives of aliphatic diamines has been optimized by capillary zone electrophoresis (CZE) using end-column amperometric detection with a carbon fiber microelectrode, at a constant potential of 0.7 V versus SCE. The optimum conditions for the separation were 10 mM Tris-H3PO4 (pH 4.0) for the running buffer solution, 15 kV for the separation voltage. The detection limits for diaminopropane, putrescine, cadaverine, diaminohexane were 6.7×10−8, 5.1×10−8, 1.9×10−7 and 3.8×10−7 M, respectively (S/N=3). The proposed method was applied to the determination of aliphatic diamines in a lake water sample by the standard addition method. The recovery of these amines in water was 89.9-107%.  相似文献   

13.
A novel, highly selective and sensitive paper-based colorimetric sensor for trace determination of copper (Cu2+) ions was developed. The measurement is based on the catalytic etching of silver nanoplates (AgNPls) by thiosulfate (S2O32−). Upon the addition of Cu2+ to the ammonium buffer at pH 11, the absorption peak intensity of AuNPls/S2O32− at 522 nm decreased and the pinkish violet AuNPls became clear in color as visible to the naked eye. This assay provides highly sensitive and selective detection of Cu2+ over other metal ions (K+, Cr3+, Cd2+, Zn2+, As3+, Mn2+, Co2+, Pb2+, Al3+, Ni2+, Fe3+, Mg2+, Hg2+ and Bi3+). A paper-based colorimetric sensor was then developed for the simple and rapid determination of Cu2+ using the catalytic etching of AgNPls. Under optimized conditions, the modified AgNPls coated at the test zone of the devices immediately changes in color in the presence of Cu2+. The limit of detection (LOD) was found to be 1.0 ng mL−1 by visual detection. For semi-quantitative measurement with image processing, the method detected Cu2+ in the range of 0.5–200 ng mL−1(R2 = 0.9974) with an LOD of 0.3 ng mL−1. The proposed method was successfully applied to detect Cu2+ in the wide range of real samples including water, food, and blood. The results were in good agreement according to a paired t-test with results from inductively coupled plasma-optical emission spectrometry (ICP-OES).  相似文献   

14.
A novel calix[4]arene derivative containing benzothiazole azo groups at the upper rim was synthesized as chromogenic chemosensor, and its binding and sensing properties with heavy metal ions (Pb2+, Hg2+, Ni2+, Cd2+, Cu2+, Zn2+, Co2+, Fe2+, Mn2+, Cr3+, Ag+) were investigated by UV-vis spectroscopy and voltammetric techniques. The results of spectroscopic and voltammetric experiments showed that the chromogenic chemosensor has high selectivity towards Hg2+ ion over the other heavy metal ions. Moreover, it was shown that the interaction between Hg2+ and the chromogenic chemosensor occurs by means of the benzothiazole azo groups at the upper rim by using differential pulse voltammetry. The stoichiometric ratio and the association constant were determined as 1:1 and (6.1 ± 0.3) × 105 L mol−1 for the complex between Hg2+ and the ionophore. Furthermore, we prepared a rapid test kit for early detection of Hg2+ in aqueous environment in the concentration range of 1 × 10−4 to 1 × 10−2 M.  相似文献   

15.
A method for solid phase extraction of trace metals such as Cd2+, Cr6+, Cu2+, Fe3+, Mn2+, Ni2+, Pb2+ and Zn2+ using nanometer-sized alumina coated with chromotropic acid prior to determination by inductively coupled plasma atomic emission spectrometry (ICP-AES) has been developed. Various influencing parameters on the separation and preconcentration of trace metals, pH, flow rate, sample volume, amount of adsorbent, concentration of eluent and sorption kinetics have been studied. The detection limits for Cd2+, Cr6+, Cu2+, Fe3+, Mn2+, Ni2+, Pb2+ and Zn2+ were found to be 0.14, 0.62, 0.22, 0.54, 0.27, 0.28, 0.53 and 0.38 ng ml− 1, respectively. The adsorption capacity of the solid phase adsorption material is 10.3, 11.3, 14.5, 16.4, 15.1, 11.7, 15.4 and 16.8 mg g− 1 for Cd2+, Cr6+, Cu2+, Fe3+, Mn2+, Ni2+, Pb2+ and Zn2+, respectively. The preconcentration factor was obtained in the range of 50-100 for all studied metal ions. Coexisting ions over a high concentration range have not shown any significant effects on the determination of aforesaid metal ions. The accuracy of the proposed method was tested by standard reference materials (NIST 1643e: water, NIST 1573a: tomato leaves and NIST 1568a rice flour) and natural waters and the results obtained were in good agreement with the certified values.  相似文献   

16.
Silver and gold electrodes are useful for the quantitative determination of lead and cadmium with subtractive anodic stripping voltammetry (SASV). The use of SASV is essential for achieving good separation between the two peaks, to eliminate the interference of nitrates when cadmium is present and to allow analysis at very low concentrations without the removal of oxygen. The deposition and dissolution of Pb2+ and Cd2+ proceed at underpotential (UPD) on both electrodes. The UPD properties of the deposits are the main factor determining the analytical characteristics of the ASV method and are strongly affected by the type and concentration of the electrolyte. The effects of anions (Cl, Br, SO42−, NO3) and acids (HNO3, HClO4, H2SO4, HCl) are shown. The two electrodes complement each other and, in addition, enable the qualitative identification of Pb2+ and Cd2+, since the peaks appear in opposite order on the two electrodes. Analysis of mixtures of the two analytes is restricted on gold but not on silver. At gold the two peaks overlap: (i) at concentrations of cadmium higher than 250 nM at deposition times greater than 30 s, (ii) in the presence of copper at concentrations higher than 1 μM, and (iii) in the presence of Triton X-100 at concentrations above 10 mg/l. The repeatability at 10 nM analyte is better than 2.5%. The detection limits for Pb2+ and Cd2+ at 120 s deposition time and 3500 rpm rotation rate are: dlPb/Ag=0.04 nM; dlCd/Ag=0.7 nM; dlPb/Au=0.1 nM; dlCd/Au=0.3 nM. The analysis of lead and cadmium in natural waters has been performed.  相似文献   

17.
The effect of dimensions (length and external diameter) of multi-walled carbon nanotubes (MWCNTs) on its preconcentration efficiency towards some metal ions (Pb2+, Cd2+, Cu2+, Zn2+ and MnO4) from environmental waters prior to their analysis by flame atomic absorption spectroscopy (FAAS) was investigated. MWCNTs (as-received from the manufacturer) of various external diameters and lengths were involved. Other variables optimized included effects of pH of water sample, composition and volume of eluent, mass of the MWCNTs, breakthrough volume and coexisting ions. Maximum recovery of metal ions was obtained at pH 9 where it was thought that precipitation of metals as their hydroxides played the major factor in metals uptake by MWCNT. It was suggested that the use of appropriate dimensions of MWCNTs may support the trapping process of the precipitated metal hydroxides by MWCNTs. It was found that long MWCNT of length 5-15 μm and external diameter 10-30 nm gave the highest enrichment efficiency towards almost all the targeted metal ions. It could be used for preconcentration of MnO4, Cu2+, Zn2+ and Pb2+ with almost full recovery; but not for Cd2+ due to its low recovery. The optimized solid phase extraction (SPE) procedure was capable of determining metal ions in the linear range 20-100 ng mL−1 (except for Zn2+ from 20 to 150 ng mL−1). Detection limits were 0.709 ng mL−1 for MnO4, 0.278 ng mL−1 for Pb2+, 0.465 ng mL−1 for Cu2+, 0.867 ng mL−1 for Zn2+. Application of the optimized SPE procedure to environmental waters (tap water, reservoir water and stream water) gave spike recoveries of the metals in the range of 81-100%.  相似文献   

18.
A new chemically modified carbon paste electrode was constructed and used for rapid, simple, accurate, selective and highly sensitive simultaneous determination of cadmium, copper and mercury using square wave anodic stripping voltammetry (SWASV). The carbon paste electrode was modified by N,N′-bis(3-(2-thenylidenimino)propyl)piperazine coated silica nanoparticles. Compared with carbon paste electrode, the stripping peak currents had a significant increase at the modified electrode. Under the optimized conditions (deposition potential, −1.100 V vs. Ag/AgCl; deposition time, 60 s; resting time, 10 s; SW frequency, 25 Hz; pulse amplitude, 0.15 V; dc voltage step height, 4.4 mV), the detection limit was 0.3, 0.1 and 0.05 ng mL−1 for the determination of Cd2+, Cu2+ and Hg2+, respectively. The complexation reaction of the ligand with several metal cations in methanol was studied and the stability constants of the complexes were obtained. The effects of different cations and anions on the simultaneous determination of metal ions were studied and it was found that the electrode is highly selective for the simultaneous determination of Cd2+, Cu2+ and Hg2+. Furthermore, the present method was applied to the determination of Cd2+, Cu2+ and Hg2+ in water and some foodstuff samples.  相似文献   

19.
In this study, a multiplex fluorescence sensor for successive detection of Fe3+, Cu2+ and Hg2+ ions based on “on–off” of fluorescence of a single type of gold nanoclusters (Au NCs) is described. Any of the Fe3+, Cu2+ and Hg2+ ions can cause quenching fluorescence of Au NCs, which established a sensitive sensor for detection of these ions respectively. With the introduction of ethylene diamine tetraacetic acid (EDTA) to the system of Au NCs and metal ions, a restoration of fluorescence may be found with the exception of Hg2+. A highly selective detection of Hg2+ ion is, thus, achieved by masking Fe3+ and Cu2+. On the other hand, the masking of Fe3+ and Cu2+ leads to the enhancement of fluorescence of Au NCs, which in turn provides an approach for successive determination of Fe3+ and Cu2+ based on “on–off” of fluorescence of Au NCs. Moreover, this assay was applied to the successful detection of Fe3+, Cu2+ and Hg2+ in fish, a good linear relationship was found between these metal ions and the degree of quenched fluorescent intensity. The dynamic ranges of Hg2+, Fe3+ and Cu2+ were 1.96 × 10−10–1.01 × 10−9, 1.28 × 10−7–1.27 × 10−6 and 1.2 × 10−7–1.2 × 10−6 M with high sensitivity (the limit of detection of Fe3+ 2.0 × 10−8 M, Cu2+ 1.9 × 10−8 M and Hg2+ 2 × 10−10 M). These results indicate that the assay is suitable for sensitive detection of these metal ions even under the coexistence, which can not only determine all three kinds of metal ions successively but also of detecting any or several kinds of metal ions.  相似文献   

20.
Kaya M  Volkan M 《Talanta》2011,84(1):122-126
A new chloride generation system was designed for the direct, sensitive, rapid and accurate determination of the total germanium in complex matrices. It was aimed to improve the detection limit of chloride generation technique by increasing the vapor pressure of germanium tetrachloride (GeCl4). In order to do so, a novel joint vapor production and gas-liquid separation unit equipped with a home-made oven was incorporated to an ordinary nitrous oxide-acetylene flame atomic absorption spectrometer. Several variables such as reaction time, temperature and acid concentration have been investigated. The linear range for germanium determination was 0.1-10 ng mL−1 for 1 mL sampling volume with a detection limit (3 s) of 0.01 ng mL−1. The relative standard deviation (RSD) was 2.4% for nine replicates of a 1 ng mL−1 germanium solution. The method was validated by the analysis of one non-certified and two certified geochemical reference materials, respectively, CRM GSJ-JR-2 (Rhyolite), and GSJ-JR-1 (Rhyolite), and GBW 07107 (Chinese Rock). Selectivity of the method was investigated for Cd2+, Co2+, Cu2+, Fe3+, Ga3+, Hg2+, Ni2+, Pb2+, Sn2+, and Zn2+ ions and ionic species of As(III), Sb(III), Te(IV), and Se(IV).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号