首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Enthalpies of solution of TiCl4(l) in aqueous perchloric acid have been measured in an isothermal calorimeter at T = 298.15 K at ionic strengths of (1.964, 3.002, and 4.062) mol · kg−1. These results were extrapolated to zero ionic strength using an extended Debye-Hückel equation, to yield the standard enthalpy of solution ; from which the standard partial molar enthalpy of formation of the titanyl ion was derived: .  相似文献   

2.
Clemente Bretti 《Talanta》2007,72(3):1059-1065
Protonation constants of succinic, 1,2,3-propanetricarboxylic and 1,2,3,4-butanetetracarboxylic anions were determined in NaClaq + KClaq mixtures, at three ionic strengths, I = 1.2, 3 and 4.5 mol L−1. Experimental evidences showed that the function log KH = f(y) (y = [Na+]/([Na+] + [K+])) is not linear, indicating mixing effects on the protonation constants. The Guggenheim zeroth approximation holds that the above function can be written as:
  相似文献   

3.
This contributions shows with a series of ab initio MP2 and DFT (BP86 and B3-LYP) computations with large basis sets up to cc-pVQZ quality that the literature value of the standard enthalpy of depolymerization of Sb4F20(g) to give SbF5(g) (+18.5 kJ mol−1) [J. Fawcett, J.H. Holloway, R.D. Peacock, D.R. Russell, J. Fluorine Chem. 20 (1982) 9] is by about 50 kJ mol−1 in error and that the correct value of (Sb4F20(g)) is +68 ± 10 kJ mol−1. We assign , , and values for SbnF5n with n = 2-4 and compare the results to available experimental gas phase data. Especially the MP2/TZVPP values obtained in an indirect procedure that rely on isodesmic reactions or the highly accurate compound methods G2 and CBS-Q are in excellent agreement with the experimental data, and reproduce also the fine experimental details at temperatures of 423 and 498 K. With these data and the additional calculation of [SbnF5n+1] (n = 1-4), we then assessed the fluoride ion affinities (FIAs) of SbnF5n(g), nSbF5(g), nSbF5(l) and the standard enthalpies of formation of SbnF5n(g) and [SbnF5n+1](g): FIA(SbnF5n(g)) = 514 (n = 1), 559 (n = 2), 572 (n = 3) and 580 (n = 4) kJ mol−1; FIA(nSbF5(g)) = 667 (n = 2), 767 (n = 3) and 855 (n = 4) kJ mol−1; FIA(nSbF5(l)) = 434 (n = 1), 506 (n = 2), 528 (n = 3) and 534 (n = 4) kJ mol−1. Error bars are approximately ±10 kJ mol−1. Also the related Gibbs energies were derived. ΔfH°([SbnF5n+1](g)) = −2064 ± 18 (n = 1), −3516 ± 25 (n = 2), −4919 ± 31 (n = 3) and −6305 ± 36 (n = 4) kJ mol−1.  相似文献   

4.
Densities of LiCl, NaCl, KCl, and CsCl in normal and heavy water solutions have been measured using a vibrating-tube densitometer with (1-2) · 10−6 precision at T = (288.15, 298.15, and 308.15) K over a wide concentration range from (0.1 to 5) molal, m. Solvent isotope effects (IE) on apparent molar volumes, as well as both on solute- and solvent-partial molar volumes were evaluated to establish their trend with cationic size in a systematic way. With the exception of the LiCl, both the “normal” standard IEs, , and the “inverse” excess IEs of the solutes, , increase linearly with the electrostriction effect of the cations (1/rion), while with increasing temperature and/or concentration, the excess effects become almost the same.In contrast to the solute excess IEs, which show linear m1/2-dependence over the whole concentration range, except for LiCl, the “inverse” excess IEs of the solvent, , hardly change over the lower concentration range (, m ? 1). However, with further increase of the concentration, these IEs significantly decrease. Individual ionic standard and excess volume contributions are derived and the results are discussed in terms of structural concepts of ionic hydration.  相似文献   

5.
Two new charge-transfer salts, [CpFeCpCH2N(CH3)3]4[PMo12O40] · CH3CN (1) and [CpFeCpCH2N(CH3)3]4[GeMo12O40] (2), were synthesized by the traditional solution synthetic method and their structures were determined by single-crystal X-ray analysis. Salt 1 belongs to the triclinic space group P1, and salt 2 belongs to the triclinic space group . There exist the complex interactions of the cationic ferrocenyl donor and Keggin polyanion in the solid state. The solid state UV-Vis diffuse reflectance spectra indicate the presence of a charge-transfer band climbing from 450 nm to well beyond 900 nm for 1, a charge-transfer band from 460 to 850 nm with λmax = 630 nm for 2.The EPR spectra of salts 1 and 2 at 77 K show a signal at g = 2.0048 and 1.9501, respectively, ascribed to the delocalization of one electron in reduced Keggin ion in salt 1 and the MoVI in [GeMo12O40]4− is partly reduced to MoV owing to the charge-transfer transitions taking place between the ferrocenyl donors and the POM acceptors. The two compounds were also characterized by IR spectroscopy and cyclic voltammetry.  相似文献   

6.
The partial molar volumes, , and partial molar heat capacities, , at infinite dilution have been determined for the compounds N-acetylasparaginamide, N-acetylglutaminamide, N-acetyltyrosinamide, and N-acetyllysinamide monohydrochloride in aqueous solution at T = (288.15, 298.15, 313.15, and 328.15) K. These results, along with the literature data for the compound N-acetylglycinamide, have been used to calculate the amino acid side-chain contributions to the thermodynamic properties. These side-chain contributions are compared with those obtained using small peptides as side-chain model compounds.  相似文献   

7.
Equilibrium constants () for the ion-pair formation of a complex ion NaL+ with ReO4 in water were determined potentiometrically at 25 °C and the ionic strength (I) of 0 mol dm−3 using a Na+-selective electrode. Here, crown ethers, L, were 15-crown-5 ether (15C5), benzo-15C5, 18-crown-6 ether (18C6) and benzo-18C6. Also, NaReO4 was extracted by the L into 1,2-dichloroethane and then extraction constants (Kex/mol−2 dm6) for the species, NaLReO4, were determined at 25 °C by AAS. These Kex values were resolved into four component equilibrium constants containing KMLA calculated at given I values. Based on these data, extraction-abilities of the L against the perrhenate were discussed in comparison with those of sodium picrate-L systems reported previously.  相似文献   

8.
A novel complex [Ba(5-OH-BDC)(H2O)3] [5-OH-H2BDC = 5-hydroxyisophtalic acid] was synthesized and characterized by X-ray crystallography. The complex is Monoclinic P21/c, a = 11.1069(4), b = 14.8192(6), c = 6.5005(2) Å, β = 103.465(3)° and Z = 4, which exhibits a three-dimensional framework formed by linkage of adjacent two-dimensional (6, 3) layers via intermolecular hydrogen bonds. The title complex has been studied by IR spectrum and TG-DTG. The constant-volume combustion energy of the complex, ΔcU, was determined as being (−3210.45 ± 1.41) kJ mol−1 by a precise rotating-bomb calorimeter at 298.15 K. The standard enthalpy of combustion, , and the standard enthalpy of formation, , were calculated as being (−3207.97 ± 1.41) and (−1922.80 ± 1.76) kJ mol−1, respectively. A calculation model for determining the specific heat capacity of the complex with an improved RD496-III microcalorimeter is also derived. The specific heat capacity of the complex was (6158.387 ± 0.187) J mol−1 K−1.  相似文献   

9.
LiMF6 (M = Ta, Nb) was prepared by the reaction between LiF and MF5 (M = Ta, Nb) in F2 gas. Pure LiMF6 (M = Ta, Nb) salts were obtained by using the reaction at temperatures higher than 473 K under 80 kPa (F2) for 24 h. The x values in LiMFx (M = Ta, Nb) were confirmed as 5.7-6.0 by XRD-Rietveld analysis. Results showed that LiMF6 (M = Ta, Nb) has a trigonal structure (, Z = 3). The respective lattice parameters of LiTaF6 and LiNbF6 are a0 = 0.533 nm, c0 = 1.362 and a0 = 0.532 nm, c0 = 1.360. The equivalent conductivities of both LiMF6 (M = Ta, Nb) in propylene carbonate (PC) are equal at 15.2 Ω−1 cm2 mol−1 at 0.01 mol dm−3. The electrochemical potential window of TaF6 is 7.0 V, which is 0.4 and 0.2 V wider, respectively, than those of BF4 and PF6.  相似文献   

10.
11.
We report the results of a calorimetric study on the hydrolysis of UO22+ in different ionic media (NaClO4 aq, NaClaq) at 25 °C. Experiments in NaCl were performed at different ionic strength, at I≤1 mol l−1. The species considered in both ionic media were UO2(OH)+, (UO2)2(OH)22+ and (UO2)3(OH)5+, and in addition (UO2)3(OH)42+ and (UO2)3(OH)7 in NaClaq. The dependence on ionic strength of enthalpy changes in NaClaq was expressed by the simple linear equation ΔHpqH°pq+aI1/2 (a, empirical parameter). Comparison with literature findings is given and some recommended values are reported.  相似文献   

12.
The heat capacity of LuPO4 was measured in the temperature range 6.51-318.03 K. Smoothed experimental values of the heat capacity were used to calculate the entropy, enthalpy and Gibbs free energy from 0 to 320 K. Under standard conditions these thermodynamic values are: (298.15 K) = 100.0 ± 0.1 J K−1 mol−1, S0(298.15 K) = 99.74 ± 0.32 J K−1 mol−1, H0(298.15 K) − H0(0) = 16.43 ± 0.02 kJ mol−1, −[G0(298.15 K) − H0(0)]/T = 44.62 ± 0.33 J K−1 mol−1. The standard Gibbs free energy of formation of LuPO4 from elements ΔfG0(298.15 K) = −1835.4 ± 4.2 kJ mol−1 was calculated based on obtained and literature data.  相似文献   

13.
14.
The reactions of UO3 and TeO3 with KCl, RbCl, or CsCl at 800 °C for 5 d yield single crystals of A2[(UO2)3(TeO3)2O2] (A=K (1), Rb (2), and Cs (3)). These compounds are isostructural with one another, and their structures consist of two-dimensional sheets arranged in a stair-like topology separated by alkali metal cations. These sheets are comprised of zigzagging uranium(VI) oxide chains bridged by corner-sharing trigonal pyramidal TeO32− anions. The chains are composed of dimeric, edge-sharing, pentagonal bipyramidal UO7 moieties joined by edge-sharing tetragonal bipyramidal UO6 units. The lone-pair of electrons from the TeO3 groups are oriented in opposite directions with respect to one another on each side of the sheets rendering each individual sheet non-polar. The alkali metal cations form contacts with nearby tellurite oxygen atoms as well as with oxygen atoms from the uranyl moieties. Crystallographic data (193 K, MoKα, ): 1, triclinic, space group , , , , α=101.852(1)°, β=102.974(1)°, γ=100.081(1)°, , Z=2, R(F)=2.70% for 98 parameters and 1697 reflections with I>2σ(I); 2, triclinic, space group , , , , α=105.590(2)°, β=101.760(2)°, γ=99.456(2)°, , Z=2, R(F)=2.36% for 98 parameters and 1817 reflections with I>2σ(I); 3, triclinic, space group , , , , α=109.301(1)°, β=100.573(1)°, γ=99.504(1)°, , Z=2, R(F)=2.61% for 98 parameters and 1965 reflections with I>2σ(I).  相似文献   

15.
A new three-dimensional non-interpenetrating coordination polymer, [{Cu(dps)2(SO4)}·3H2O·DMF]n (1) (dps=4,4′-dipyridyl sulfide) was synthesized and structurally characterized. 1 crystallizes in triclinic system, space group P−1 with cell parameters of a=10.9412(1) Å, b=11.8999(1) Å, c=12.5057(1) Å, V=1400.7(3) Å3, Z=2, Dc=1.573 g cm−3, F(0 0 0)=686, μ=1.059 mm−1. R1=0.0436, wR2=0.1148. In the polymeric architecture, serve as bridging coligands to connect highly puckered [Cu2(dps)2]n frameworks resulting in a 3D motif containing channels for guest molecule inclusion. Quantum chemistry calculation shows that the third-order NLO properties of polymer 1 are controlled by groups and dps ligands, and metal ions have less influence on the third-order NLO properties.  相似文献   

16.
The enthalpies of dilution have been measured for aqueous Li2B4O7 solutions from 0.0212 to 2.1530 mol kg−1 at 298.15 K. The relative apparent molar enthalpies, L?, and relative partial molar enthalpies of the solvent and solute, and were calculated. The thermodynamic properties of the complex aqueous solutions were represented with a modified Pitzer ion-interaction model.  相似文献   

17.
A hyphenated ion-pair (tetrabutylammonium chloride—TBACl) reversed phase (C18) HPLC-ICP-MS method (High Performance Liquid Chromatography Inductively Coupled Plasma Mass Spectroscopy) for anionic Rh(III) aqua chlorido-complexes present in an HCl matrix has been developed. Under optimum chromatographic conditions it was possible to separate and quantify cationic Rh(III) complexes (eluted as a single band), [RhCl3(H2O)3], cis-[RhCl4(H2O)2], trans-[RhCl4(H2O)2] and [RhCln(H2O)6−n]3−n (n = 5, 6) species. The [RhCln(H2O)6−n]3−n (n = 5, 6) complex anions eluted as a single band due to the relatively fast aquation of [RhCl6]3− in a 0.1 mol L−1 TBACl ionic strength mobile phase matrix. Moreover, the calculated t1/2 of 1.3 min for [RhCl6]3− aquation at 0.1 mol kg−1 HCl ionic strength is significantly lower than the reported t1/2 of 6.3 min at 4.0 mol kg−1 HClO4 ionic strength. Ionic strength or the activity of water in this context is a key parameter that determines whether [RhCln(H2O)6−n]3−n (n = 5, 6) species can be chromatographically separated. In addition, aquation/anation rate constants were determined for [RhCln(H2O)6−n]3−n (n = 3-6) complexes at low ionic strength (0.1 mol kg−1 HCl) by means of spectrophotometry and independently with the developed ion-pair HPLC-ICP-MS technique for species assignment validation. The Rh(III) samples that was equilibrated in differing HCl concentrations for 2.8 years at 298 K was analyzed with the ion-pair HPLC method. This analysis yielded a partial Rh(III) aqua chlorido-complex species distribution diagram as a function of HCl concentration. For the first time the distribution of the cis- and trans-[RhCl4(H2O)2] stereoisomers have been obtained. Furthermore, it was found that relatively large amounts of ‘highly’ aquated [RhCln(H2O)6−n]3−n (n = 0-4) species persist in up to 2.8 mol L−1 HCl and in 1.0 mol L−1 HCl the abundance of the [RhCl5(H2O)]2− species is only 8-10% of the total, far from the 70-80% as previously proposed. A 95% abundance of the [RhCl6]3− complex anion occurs only when the HCl concentration is above 6 mol L−1. The detection limit for a Rh(III) species eluted from the column is below 0.147 mg L−1.  相似文献   

18.
19.
Single crystals of the potassium uranyl iodate, K[UO2(IO3)3] (1), have been grown under mild hydrothermal conditions. The structure of 1 contains two-dimensional sheets extending in the [ab] plane that consist of approximately linear UO22+ cations bound by iodate anions to yield UO7 pentagonal bipyramids. There are three crystallographically unique iodate anions, two of which bridge between uranyl cations to create sheets, and one that is monodentate and protrudes in between the layers in cavities. K+ cations form long ionic contacts with oxygen atoms from the layers forming an eight-coordinate distorted dodecahedral geometry. These cations join the sheets together. Ion-exchange reactions have been carried out that indicate the selective uptake of Cs+ over Na+ or K+ by 1. Crystallographic data (193 K, MoKα, ): 1, orthorhombic, Pbca, a=11.495(1) Å, b=7.2293(7) Å, c=25.394(2) Å, Z=8, R(F)=1.95% for 146 parameters with 2619 reflections with I>2σ(I).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号