首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents a cost-effective and validated multi residue confirmatory method for the determination of 167 chemically different pesticides and a survey study on Cyprus honey samples. This method uses ethyl acetate for the extraction of pesticides from honey and the determination is performed with liquid chromatography (LC) coupled to mass spectrometry (MS) operating in tandem mode (MS/MS) and with GC–ECD (gas chromatography with electron capture detector) analysis. The LC-MS/MS analytical system is especially important in the analysis of polar and non-volatile pesticides. For the validation of the method, blank honey samples were spiked with 146 pesticides (organophosphorous, carbamates, triazoles, amides, neonicodinoids, strobilurines, phenylureas, bendimidazoles and others) for the LC-MS/MS analysis at three levels: 0.01, 0.05 and 0.1 mg kg?1 and with 21 pesticides for the GC-ECD analysis at two levels: 0.01 and 0.05 mg kg?1for organochlorines and 0.05 and 0.2 mg kg?1for the pyrethroids. As blank sample, a sample of honey which did not contain detectable levels of the analytes sought was used. The validation study was in accordance to the DG SANCO guidelines. The scope of validation included recovery, linearity, limits of quantification and precision. Linearity is demonstrated all along the range of concentration that was investigated with correlation coefficients ≥0.98. Recoveries of the majority of compounds were in the 70%–120% range and were characterised by precision lower or equal to 20%. The validated method was used for a survey of 36 samples of honey produced in different areas of Cyprus and this is the first work on Cypriot honey samples investigating a broad range of pesticides. Only coumaphos was detected at concentrations higher than 0.01 mg kg?1 in the 58.6% of the honey samples analysed for Coumaphos. The results were evaluated in accordance to the provisions of the Commission Regulation (EU) No 37/2010 on pharmacologically active substances and their classification regarding maximum residue limits (MRLs) in foodstuffs of animal origin. The concentrations of coumaphos in all positive samples were at levels much lower than the MRL.  相似文献   

2.
通过化学共沉淀法使Fe3O4纳米粒子负载于酸化多壁碳纳米管(AMWNTs)表面,得到Fe3O4/AMWNTs磁性纳米材料。该材料具有很好的磁响应度和分散性,将其用于富集痕量拟除虫菊酯类农药残留,结果证明该复合材料对菊酯类农药的吸附性能良好。通过对影响萃取性能的几种因素如离子强度、萃取时间和解吸时间依次进行优化,在最优条件下,建立了Fe3O4/AMWNTs磁性分散固相萃取-气相色谱测定6种菊酯类农药残留的分析方法。线性范围在0.5~50 μg/L之间,相关系数(R2)大于0.990,检出限为0.07~0.20 μg/L,精密度为3.8%~8.1%。该方法用于河水、鱼塘水和两种市售蜂蜜中菊酯类农药的残留分析,回收率高于78.4%。该方法操作简便、灵敏度高,能够满足环境水样及蜂蜜样品中痕量菊酯农药残留的分析需求。  相似文献   

3.
Summary The potential of liquid chromatography-mass spectrometry (LC-MS) has been studied for the simultaneous determination of sixteen carbamate and organophosphorus pesticides in honeybees using a traditional sample preparation protocol based on acetone extraction and dichloromethane partitioning. The performances of both atmospheric pressure chemical ionization (APCI) and electrospray (ES) interfaces were compared. APCI offered better sensitivity and specificity for a higher range of pesticides. Limits of quantification were from 0.01 to 0.17 mg kg–1, at which recoveries obtained were between 64 and 93%, except for pirimicarb that was at 13%, with relative standard deviations ranging from 7 to 20%. Fenitrothion, fenoxycarb, methiocarb and phoxim were found in bees from Valencian Community beehives at concentrations between 0.03 and 3.75 mg kg–1.  相似文献   

4.
The presence of pesticide residues in water is a huge worldwide concern. In this paper we described the development and validation of a new liquid chromatography tandem mass spectrometric (LC-MS/MS) method for both screening and quantification of pesticides in water samples. In the sample preparation stage, the samples were buffered to pH 7.0 and pre-concentrated on polymeric-based cartridges via solid-phase extraction (SPE). Highly sensitive detection was carried out with mobile phases containing only 5 mM ammonium formate (pH of 6.8) as an eluent additive and using only positive ionization mode in MS/MS instrument. Hence, only 200-fold sample enrichment was required to set a screening detection limit (SDL) and reporting limit (RL) of 10 ng/L. The confirmatory method was validated at 10 and 100 ng/L spiking levels. The apparent recoveries obtained from the matrix-matched calibration (5–500 ng/L) were within the acceptable range (60–120%), also the precision (relative standard deviation, RSD) was not higher than 20%. During the development, 480 pesticides were tested and 330 compounds fulfilled the requirements of validation. The method was successfully applied to proficiency test samples to evaluate its accuracy. Moreover, the method robustness test was carried out using higher sample volume (500 mL) followed by automated SPE enrichment. Finally, the method was used to analyze 20 real samples, in which some compounds were detected around 10 ng/L, but never exceeded the assay maximum level.  相似文献   

5.
Over the past two decades, there has been an alarming decline in the number of honey bee colonies. This phenomenon is called Colony Collapse Disorder (CCD). Bee products play a significant role in human life and have a huge impact on agriculture, therefore bees are an economically important species. Honey has found its healing application in various sectors of human life, as well as other bee products such as royal jelly, propolis, and bee pollen. There are many putative factors of CCD, such as air pollution, GMO, viruses, or predators (such as wasps and hornets). It is, however, believed that pesticides and microorganisms play a huge role in the mass extinction of bee colonies. Insecticides are chemicals that are dangerous to both humans and the environment. They can cause enormous damage to bees’ nervous system and permanently weaken their immune system, making them vulnerable to other factors. Some of the insecticides that negatively affect bees are, for example, neonicotinoids, coumaphos, and chlorpyrifos. Microorganisms can cause various diseases in bees, weakening the health of the colony and often resulting in its extinction. Infection with microorganisms may result in the need to dispose of the entire hive to prevent the spread of pathogens to other hives. Many aspects of the impact of pesticides and microorganisms on bees are still unclear. The need to deepen knowledge in this matter is crucial, bearing in mind how important these animals are for human life.  相似文献   

6.
The potential applications of a new atmospheric pressure source for GC‐MS analysis have been investigated in this work. A list of around 100 GC‐amenable pesticides, which includes organochlorine, organophosphorus and organonitrogenated compounds, has been used to evaluate their behavior in the new source. Favoring the major formation of the molecular ion in the source has been the main goal due to the wide‐scope screening possibilities that this fact brings in comparison with the traditional, highly fragmented electron ionization spectra. Thus, the addition of water as modifier has been tested as a way to promote the generation of protonated molecules. Pesticides investigated have been classified into six groups according to their ionization/fragmentation behavior. Four of them are characterized by the abundant formation of the protonated molecule in the atmospheric pressure source, mostly being the base peak of the spectrum. These results show that wide‐scope screening could be easily performed with this source by investigating the presence of the protonated molecule ion, MH+. The developed procedure has been applied to pesticide screening in different food samples (nectarine, orange and spinach) and it has allowed the presence of several pesticides to be confirmed such as chlorpyriphos ethyl, deltamethrin and endosulfan sulfate. The availability of a quadrupole time‐of‐flight instrument made it feasible to perform additional MS/MS experiments for both standards and samples to go further in the confirmation of the identity of the detected compounds. Results shown in this paper have been obtained using a prototype source which exhibits promising features that could be applied to other analytical problems apart from those illustrated in this work. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
《Analytical letters》2012,45(23-24):2197-2205
Abstract

Sample preparation procedures and gas chromatography methodology are presented for the determination of tabun, sarin, soman, and VX in aqueous solutions. Extraction recoveries from chloroform were quantitative. Peak area ratios of organophosphorus compounds (OPs) to internal standard versus concentrations of OP were linear over the range of 10-1000 (μg/ml when determined by the flame ionization detector and 10-800 μg/ml when determined by the flame photometric detector. Imprecision occurring at low ng concentrations of VX was caused by its adsorption on the analytical column. Acceptable precision was regained by the addition of a weak base, such as atropine, to the sample extract prior to its injection onto the gas chromatograph (GC).  相似文献   

8.
A rapid, sensitive and efficient liquid phase microextraction (LPME) method was developed to determine trace concentrations of some organophosphorus pesticides in water samples. This method combines liquid phase microextraction with gas chromatographic (GC) analysis in a simple and inexpensive apparatus involving very little organic solvent consumption. It involves exposing a floated drop of an organic solvent on the surface of aqueous solution in a sealed vial. Experimental parameters which control the performance of LPME such as type of organic solvent, organic solvent and sample volumes, sample stirring rate, sample solution temperature, salt addition and exposure time were investigated and optimized. Finally, the enrichment factor, dynamic linear range (DLR), limit of detection (LOD) and precision of the method were evaluated by the water samples spiked with organophosphorus pesticides. Using optimum extraction conditions, very low detection limits (0.01-0.04 μg L−1) and good linearities (0.9983 < r2 < 0.9999) were achieved. The LPME was performed for determination of organophosphorus pesticides in different types of natural water samples and acceptable recoveries (96-104%) and precisions (3.5 < R.S.D.% < 8.9) were obtained. The results suggested that the newly proposed LPME method is a rapid, accurate and effective sample preparation method and could be successfully applied for extraction and determination of organophosphorus pesticides in water samples.  相似文献   

9.
Ivano Marchi 《Talanta》2009,78(1):1-610
This review presents the state-of-the-art techniques that couple liquid chromatography (LC) and mass spectrometry (MS) via atmospheric pressure photoionization (APPI). The different ionization mechanisms are discussed as well as the influence of the mobile phase composition, the nature of the dopant, etc. A comparison with other ionization sources, such as electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI), is reported, and the combination of APPI with these sources is also discussed. Several applications, covering the time period of 2005-2008, for the analysis of drugs, lipids, natural compounds, pesticides, synthetic organics, petroleum derivatives, and other substances are presented.  相似文献   

10.
Abstract

Trace amounts (ppb or less) of phosphorus containing compounds present in aqueous samples are adsorbed on XAD-4 and subsequently eluted by means of ethyl acetate. The solvent and the eluted compounds are evaporated and swept over a Tenax-GC tube. This gas stripping method traps the phosphorus containing compounds together with only a small amount of the solvent whereas the water entrapped in the XAD step is removed simultaneously. The compounds are desorbed from the Tenax-GC tube and injected into the gas chromatograph using the combination of thermal desorption, cold trapping and flash heating. The subsequent analysis is carried out on a capillary column and the compounds are detected by means of a flame photometric detector. The various steps of the analytical procedure are discussed, including the recoveries of the different compounds studied and some instrumental aspects.  相似文献   

11.
固相萃取-GC/MS法测定水样中20种有机氯农药   总被引:2,自引:0,他引:2  
建立了用固相萃取小柱提取和净化、GC/MS定性定量同时测定水样中20种有机氯农药的方法。方法采用OasisHLB固相萃取小柱萃取富集水样,二氯甲烷洗脱,加入菲-d10作为内标,利用GC/MS进行定性定量,步骤简便,线性响应良好,干扰小,方法检出限为0.21~0.72 ng/L(按水样1L计),加标回收率为64.8%~122%,RSD为1.2%~11.0 %。成功利用该方法对广西实际河水样品进行了检测。结果表明方法可以同时满足环境水样中20种痕量有机氯农药的测定。  相似文献   

12.
An organic polymer was re-precipitated in solution to use as an adsorbent in dispersive solid-phase extraction of some pesticides from honey samples prior to their determination by high-performance liquid chromatography-tandem mass spectrometry. In this approach, different deep eutectic solvents were prepared using lysine and their ability in elution of the analytes from the adsorbent surface was tested. A diluted honey solution was transferred into a glass test tube and then a solution of polystyrene dissolved in dimethylformamide was injected into the solution. By doing this, polystyrene is re-precipitated in the solution and dispersed in whole parts of it as many tiny particles. Then the mixture was centrifuged and the adsorbed analytes on the particles were eluted using a proper hydrophilic deep eutectic solvent. The central composite design approach was used for the optimization of effective parameters. The limits of detection and quantification were in the ranges of 0.06–0.20 and 0.22–0.69 ng/g, respectively. The calibration curves obtained by matrix-matched standard solutions were linear in the range of 0.69–500 ng/g with a coefficient of determinations ≥0.9962. The method provided high extraction recoveries (70–99%) and enrichment factors (140–198), and an acceptable precision (relative standard deviations ≤7.1%).  相似文献   

13.
The aim of this work was to develop an analytical method for simultaneous assay of residues of two families of antibiotics, and three pesticides, in honey. The assays involved a mixture of five tetracyclines, four sulfamides, and the pesticides coumaphos, carbendazim, and amitraz (two metabolites). All the compounds were extracted from honey and pre-concentrated by optimised solid-phase extraction (SPE). Analysis was by high-performance liquid chromatography-mass spectrometry-mass spectrometry (HPLC-MS-MS) using a triple-quadrupole spectrometer in multiple reaction monitoring (MRM) mode in order to identify and quantify the compounds present (Sheth et al J Agric Food Chem 38:1125–1130, 1990). During development of the analytical method a strong matrix effect was found that depended on the floral origin of the honey. This led to the development of a standard additions method to quantify the contaminants sought.  相似文献   

14.
Summary A gas chromatographic method employing a capillary column and a selective nitrogen/phosphorus detector (NPD) has been developed for the determination of organophosphorus (OP) and organonitrogen (NP) pesticides in horticultural samples (apples). The separation of sixteen pesticides and the internal standard was performed in thirteen minutes. The analytical characteristics of the method, including linear response ranges, detection limits, and reproducibility, have been studied using a 11 mixture of ethyl acetate and xylene as extraction solvent. The possibility of mutual interference between pesticides has also been studied. A procedure for the quantitative extraction of the sixteen pesticides from apple samples has also been developed; for fifteen of the pesticides recoveries >85% were obtained after 90 minutes extraction. The effect of different solvents both on recovery and on the sensitivity of the subsequent chromatography were also investigated. It was found that the sensitivity required must be considered when the solvent for sample treatment is selected.  相似文献   

15.
潘元海  金军  蒋可 《分析化学》2000,28(6):666-671
用反相液谱短柱实现了6种有机磷农药(乙酰甲胺磷、甲基对硫磷、杀螟硫磷、喹硫磷、二嗪农、辛硫磷)的高效液相色谱/大气压化学电离质谱(HPLC/APCIMS)快速分析。此技术可以很好地实现水中痕量有机磷农药的测定,一次联机分析仅需10min。文中还讨论了二嗪农的碰撞诱导解离(CID)碎片谱。二嗪农和喹硫磷的检出限可低达0.09ng和0.1ng。  相似文献   

16.
An analytical method was developed and validated for simultaneous quantitation of 65 pesticides, including one single solid-phase extraction (SPE) procedure in surface water by liquid chromatography coupled to tandem mass spectroscopy. Different parameters that have an influence on extraction efficiency were evaluated in this research. Different types of cartridges, elution solvents, and sorbent drying time were investigated, and the most appropriate one was selected. Moreover, various pretreatment techniques were applied to remove sediments from water without the loss of pesticides. Centrifugation was introduced as the best option at the beginning of sample preparation to resolve the clogging of the sorbent cartridges. The recoveries of all pesticides ranged from 70% to 120%, with a relative standard deviation of less than 13.7%. The feasibility of the method was evaluated on 10 surface water samples with different concentrations of sand, sediment, and particles.  相似文献   

17.
A screening method for multiple classes of pesticides and pharmaceuticals from fish cultivation water was established using liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (LC-QTOF-MS). Parallel solid-phase extraction (SPE) with different adsorbents was selected for extracting and purifying analytes with different properties. This method allowed for efficient and economical screening of a virtually unlimited number of compounds without reference standards. In order to evaluate the feasibility of this method, 25 pesticides and pharmaceuticals with different properties were selected. The screening detection limit of this method was 0.015?µg L?1, which was lower than the maximum residue limits. This value showed that the method was suitable for screening organic contaminants in fish cultivation water. In a simulation experiment, the organic contaminants with high intensity (atrazine and carbendazim) were identified by retention time, accurate mass, isotopic pattern, and the main fragment ions. Moreover, the information about the organic contaminants and MS2 spectra was added into a database. Since the QTOF-MS data were traceable, they were saved and could be reexamined for compounds that previously were unexpected. This method provides insight into the screening and identification of organic contaminants in water samples, as well as risk assessment and fishery accident identification.  相似文献   

18.
Rice crop is mainly cultivated in large river basins which constitute unique ecosystems and their ecological quality is invaluable. However, the high loads of pesticides used in rice cultivation contribute to the contamination of the water resources in such rice-cultivated regions. To regularly monitor the quality of such water resources there is a need for a rapid and sensitive multi-residue analytical method. This study presents the development and validation of a new analytical method for the simultaneous determination of most rice pesticides including penoxsulam, tricyclazole, propanil and its main metabolite 3,4-dichloroaniline, azoxystrobin, molinate, profoxydim and deltamethrin. A solid-phase extraction (SPE) procedure followed by high performance liquid chromatography (HPLC) with diode array detection (DAD) was used. A C18 RP column operated at 30°C was utilised and the analytes were separated with a mobile phase of acetonitrile/water mixture in a linear gradient. Clean-up of water samples and isolation of pesticides was performed on SPE Bakerbond octadecyl cartridges and an ethyl acetate-dichlomethane mixture (9?:?1 v/v, 2?mL) was used for elution. Method validation was performed by means of intra-day (n?=?5) and inter-day accuracy and precision (n?=?8), sensitivity and linearity. The relative recoveries of the pesticides in paddy water samples were acceptable (80.6–110.2%) and the relative standard deviation (RSD%) ranged from 1.9 to 7.6%. Limits of detection (LOD) and limits of quantification (LOQ) varied from 0.1 to 0.8?ng?mL?1 and 0.25 to 2.0?ng?mL?1 respectively, depending on the analyte. The method was subsequently applied for the determination of pesticide residues in paddy and canal water samples. Tricyclazole was the most frequently detected pesticide at the highest concentrations, while herbicides were less frequently detected and at lower concentrations. The method described could be a valuable tool for regular monitoring of surface water systems in rice-cultivated basins.  相似文献   

19.
固相萃取-气相色谱法测定茶叶中残留的92种农药   总被引:13,自引:5,他引:8  
建立了茶叶中92种农药多残留的气相色谱分析方法。茶叶样品用乙腈一次性提取后,有机磷类农药经Envi-Carb固相小柱净化,用10 mL乙腈-甲苯(体积比为3∶1)洗脱剂淋洗,气相色谱-火焰光度检测器(GC-FPD)检测;有机氯类和拟除虫菊酯类农药经串联Envi-Carb和NH2固相小柱净化,用5 mL乙腈-甲苯(体积比为3∶1)洗脱剂淋洗,GC-电子捕获检测器(ECD)检测。采用外标法定量。添加回收试验的结果表明:92种农药的平均回收率为80.3%~117.1%,相对标准偏差为1.5%~9.8%。方法的检出限为0.0025~0.10 mg/kg。该方法的灵敏度、准确度和精密度均符合农药残留测定的技术要求。  相似文献   

20.
The control of pesticides in surface, drinking and groundwater is nowadays a real necessity. In the European Community, their concentration must comply with the established parametric and environmental quality standards (EQSs). Regarding the new legislation, this article updates the information concerning the monitoring of pesticides and the technical specifications for their measurement in water samples where ultra-sensitive analytical methods are required. For some compounds, like pesticides, there is still a need to improve the performance of the existing methods. High sensitive techniques like gas chromatography tandem mass spectrometry (GC–MS/MS) and liquid chromatography coupled with mass spectrometry (LC–MS) have been developed. However, for most of the substances present at trace and ultra-trace levels the extraction and preconcentration steps are so far essential for their detection. Advances at a micro scale have been made and different types of microextractions are being developed. Liquid-phase microextraction (LPME) is an example. The study of this technique has increased in the last years and some innovations have been recently reported for pesticides water analysis. This article reviews the new developed LPME-based techniques and compares its performance with the analytical specifications established for pesticides water monitoring. The results show that LPME-based techniques can be a promising tool to improve the nowadays performance of methods used in pesticides water control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号