首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Linear alkylbenzene sulphonates (LAS) and polycyclic aromatics hydrocarbons (PAH) are organic pollutants in sewage sludge which will have to be monitored in the European Union according to the third draft of a future sludge directive. In the present work, an analytical method for the simultaneous extraction of 4 LAS homologues and 16 PAH congeners in sludge from wastewater treatment plants is proposed to improve the routine analysis of these compounds in sludge samples. The method involves sonication assisted extraction, clean-up and preconcentration by solid phase extraction, and determination by high-performance liquid chromatography with ultraviolet diode array (UV-DAD) and fluorescence (FLD) detectors. Average recoveries were 87% for LAS and 76% for PAH, with relative standard deviations below 13%. Limits of quantification of LAS and PAH were in the range from 13 to 56 mg kg−1 and from 80 to 650 μg kg−1, respectively, when using UV-DAD. Limits of quantification of LAS and PAH were in the range 5-18 mg kg−1 and from 1 to 150 μg kg−1, respectively, when using FLD. The applicability of the proposed method was evaluated by the determination of these compounds in sludge from wastewater treatment plants in Seville (South Spain).  相似文献   

2.
In this paper we describe an environmentally friendly and sensitive method for the determination of ten primary amines in sewage sludge. The method is based on pressurised hot water extraction (PHWE) followed by simultaneous derivatization with pentafluorobenzaldehyde (PFBAY) and headspace solid-phase microextraction (HS-SPME) and subsequent gas-chromatography ion-trap tandem mass spectrometry (GC-IT-MS-MS) analysis. The influence of the main factors on the PHWE of sludge was optimized by a central composite design. For all species the optimal conditions were water at pH 4 as the extracting solvent, an extraction temperature of 100 °C and an extraction time of 15 min. The separation and detection of the ten amines by GC-IT-MS-MS took just 10 min and the entire process took approximately 1 h. Repeatability and reproducibility between days, expressed as RSD (%) (n = 5), were less than 19 and 24%, respectively. The average limit of detection (LOD) was of 65 μg kg−1 s (range found 9-135) and the average limit of quantification (LOQ) was of 230 μg kg−1 (range found 50-450) of dry weight (d.w.). Under optimized conditions we used this method to determine the compounds in industrial and municipal sewage sludge samples and in sludge from a potable water treatment plant. Methylamine and isobutylamine showed the highest levels in one of the industrial sewage sludge samples (404 and 543 mg kg−1 (d.w.), respectively). To our knowledge, this paper presents for the first time the determination of ten primary amines in sewage sludge samples using PHWE.  相似文献   

3.
A cost-effective sequential injection monosegmented flow analysis (SI-MSFA) with anodic stripping voltammetric (ASV) detection has been developed for determination of Cd(II) and Pb(II). The bismuth film working electrode (BiFE) was employed for accumulative preconcentration of the metals by applying a fixed potential of −1.10 V versus Ag/AgCl electrode for 90 s. The SI-MSFA provides a convenient means for preparation of a homogeneous solution zone containing sample in an acetate buffer electrolyte solution and Bi(III) solution for in situ plating of BiFE, ready for ASV measurement at a flow through thin layer electrochemical cell. Under the optimum conditions, linear calibration graphs in range of 10-100 μg L−1 of both Cd(II) and Pb(II) were obtained with detection limits of 1.4 and 6.9 μg L−1 of Cd(II) and Pb(II), respectively. Relative standard deviations were 2.7 and 3.1%, for 11 replicate analyses of 25 μg L−1 Cd(II) and 25 μg L−1 Pb(II), respectively. A sample throughput of 12 h−1 was achieved with low consumption of reagent and sample solutions. The system was successfully applied for analysis of water samples collected from a draining pond of zinc mining, validating by inductively coupled plasma-optical emission spectroscopy (ICP-OES) method.  相似文献   

4.
This work presents an evaluation of iron and cadmium adsorption in sediment of the Furnas Hydroelectric Plant Reservatory located in Alfenas, Minas Gerais (Brazil). The metal determination was done employing a flow injection analysis (FIA) with an on-line filtering system. As detection techniques, flame atomic absorption spectrometry (FAAS) for iron and thermospray flame furnace atomic absorption spectrometry (TS-FF-AAS) for cadmium determinations were used. The developed methodology presented good limits of detection, being 190 μg L−1 for iron and 1.36 μg L−1 for cadmium, and high sampling frequency for both metals 144 and 60 readings h−1 for iron and cadmium, respectively. Both metals obey the Langmuir model, with maximum adsorptive capacity of 0⋅169 mg g−1 for iron and 7⋅991 mg g−1 for cadmium. For iron, a pseudo-first-order kinetic model was obtained with a theoretical Qe = 9⋅8355 mg g−1 (experimental Qe = 9⋅5432 mg  g−1), while for cadmium, a pseudo-second-order kinetic model was obtained, with a theoretical Qe = 0.3123 mg g−1 (experimental Qe = 0⋅3052 mg g−1).  相似文献   

5.
In the present work, thermospray flame furnace atomic absorption spectrometry (TS-FF-AAS) was employed for Cu and Zn determination in bovine milk and fruit juice samples without any pretreatment. TS-FF-AAS system was optimized and a sample volume of 300 μl was injected into the carrier stream (0.014 mol l−1 HNO3 at a flow rate of 0.4 ml min−1), and it was introduced into a hot Ni tube. The detection limits obtained for Cu and Zn in aqueous solution were 2.2 and 0.91 μg l−1, respectively, and 3.2 μg l−1 for Cu in a medium containing water-soluble tertiary amines. The relative standard deviations varied from 2.7 to 4.2% (n=12). Sample preparation was carried out by simple dilution in water or in water-soluble tertiary amines medium. Accuracy was checked by performing addition-recovery experiments as well as by using reference materials (whole milk powder, non-fat milk powder, and infant formula). Recoveries varied from 97.7 to 105.3% for Cu and Zn. All results obtained for reference materials were in agreement with certified values at a 95% confidence level.  相似文献   

6.
In thermospray flame furnace atomic absorption spectrometry (TS-FF-AAS) a nickel atomization tube is placed in the acetylene/air flame on a holder built onto a standard AAS burner head. The liquid to be analyzed is transported by a low or high-pressure pump through a very hot, simple, inexpensive ceramic capillary tip acting as a flame-heated thermospray into the flame furnace. This results in complete sample introduction and increases the residence time of the sample in the absorption volume. This leads for 17 elements to a 3-110-fold improvement in the power of detection compared to conventional flame AAS. The absolute detection limits (3s values, N=25) lie between 0.2 μg l−1 (Zn) and 310 μg l−1 (Se) according to the element. The R.S.D. (N=15) is 1.4-5.5% according to the element and applied concentration. TS-FF-AAS can easily be incorporated on any standard flame AAS instrument and can be automated with a standard autosampler.  相似文献   

7.
Cadmium and iron are antagonistic elements in the sense that they produce different effects in the human body. Both elements have to be determined routinely in grain products, cadmium because of its toxicity, and iron because all grain products, according to Brazilian law, have to contain a minimum of 42 mg kg−1 Fe to combat anemia. A routine screening method has been developed for the quasi simultaneous determination of cadmium and iron using high-resolution continuum source electrothermal atomic absorption spectrometry and direct solid sampling. The primary absorption line at 228.802 nm has been used for Cd, and an adjacent secondary line at 228.726 nm for the determination of Fe. Various chemical modifiers have been investigated, and a mixture of tungsten and iridium, applied as a permanent modifier, showed the best performance; it stabilized Cd up to a pyrolysis temperature of 700 °C and did not over-stabilize Fe. Two atomization temperatures were used sequentially, 1700 °C for Cd and 2600 °C for Fe, because of their significantly different volatilities. The characteristic masses obtained were 0.9 pg for Cd and 1.2 ng for Fe. The limits of detection (3σ, n = 10) were 0.6 μg kg−1 for Cd and 0.5 mg kg−1 for Fe. The relative standard deviation ranged from 3 to 7% for Cd and from 4 to 13% for Fe, which is satisfactory for the purpose. The accuracy of the method was confirmed by the analysis of three certified reference materials; the results were in agreement with the certified values at a 95% confidence interval. The Cd content in the investigated grain products was between 0.9 and 10.5 μg kg−1, but most of them did not contain the required minimum amount of iron.  相似文献   

8.
A cost-effective sequential injection system incorporating with an in-line UV digestion for breakdown of organic matter prior to voltammetric determination of Zn(II), Cd(II), Pb(II) and Cu(II) by anodic stripping voltammetry (ASV) on a hanging mercury drop electrode (HMDE) of a small scale voltammetric cell was developed. A low-cost small scale voltammetric cell was fabricated from disposable pipet tip and microcentrifuge tube with volume of about 3 mL for conveniently incorporated with the SI system. A home-made UV digestion unit was fabricated employing a small size and low wattage UV lamps and flow reactor made from PTFE tubing coiled around the UV lamp. An in-line single standard calibration or a standard addition procedure was developed employing a monosegmented flow technique. Performance of the proposed system was tested for in-line digestion of model water samples containing metal ions and some organic ligands such as strong organic ligand (EDTA) or intermediate organic ligand (humic acid). The wet acid digestion method (USEPA 3010a) was used as a standard digestion method for comparison. Under the optimum conditions, with deposition time of 180 s, linear calibration graphs in range of 10-300 μg L−1 Zn(II), 5-200 μg L−1 Cd(II), 10-200 μg L−1 Pb(II), 20-400 μg L−1 Cu(II) were obtained with detection limit of 3.6, 0.1, 0.7 and 4.3 μg L−1, respectively. Relative standard deviation were 4.2, 2.6, 3.1 and 4.7% for seven replicate analyses of 27 μg L−1 Zn(II), 13 μg L−1 Cd(II), 13 μg L−1 Pb(II) and 27 μg L−1 Cu(II), respectively. The system was validated by certified reference material of trace metals in natural water (SRM 1640 NIST). The developed system was successfully applied for speciation of Cd(II) Pb(II) and Cu(II) in ground water samples collected from nearby zinc mining area.  相似文献   

9.
Di-(2-ethyl-hexyl)phthalate (DEHP), nonylphenol, nonylphenol mono- and diethoxylates (NPEs) and polychlorinated biphenyls (PCBs) are organic pollutants in sewage sludge which have to be monitored in the European Union according to a future Sludge Directive. In the present work, an analytical method for the simultaneous extraction and determination of DEHP, NPEs and PCBs is proposed for the routine analysis of these compounds in sludge from wastewater treatment plants. All the compounds were simultaneously extracted by sonication with hexane and analysed by gas chromatography-mass spectrometry (GC-MS) in electronic impact mode. Recoveries achieved were 105% for DEHP, 61.4-88.6% for NPEs and 55.8-108.3% for PCBs with relative standard deviation bellow 10%. Limits of quantification were 65 μg kg−1 for DEHP, from 630 to 2504 μg kg−1 for NPEs and from 5.4 to 10.6 μg kg−1 for PCBs in dried sludge. The applicability of the proposed method was evaluated by the determination of these compounds in sludge from wastewater treatment plants in Seville (South Spain).  相似文献   

10.
A method for the simultaneous determination of Pb(II), Cd(II), and Zn(II) at low μg L−1 concentration levels by sequential injection analysis-anodic stripping voltammetry (SIA-ASV) using screen-printed carbon nanotubes electrodes (SPCNTE) was developed. A bismuth film was prepared by in situ plating of bismuth on the screen-printed carbon nanotubes electrode. Operational parameters such as ratio of carbon nanotubes to carbon ink, bismuth concentration, deposition time and flow rate during preconcentration step were optimized. Under the optimal conditions, the linear ranges were found to be 2-100 μg L−1 for Pb(II) and Cd(II), and 12-100 μg L−1 for Zn(II). The limits of detection (Sbl/S = 3) were 0.2 μg L−1 for Pb(II), 0.8 μg L−1 for Cd(II) and 11 μg L−1 for Zn(II). The measurement frequency was found to be 10-15 stripping cycle h−1. The present method offers high sensitivity and high throughput for on-line monitoring of trace heavy metals. The practical utility of our method was also demonstrated with the determination of Pb(II), Cd(II), and Zn(II) by spiking procedure in herb samples. Our methodology produced results that were correlated with ICP-AES data. Therefore, we propose a method that can be used for the automatic and sensitive evaluation of heavy metals contaminated in herb items.  相似文献   

11.
A simple and rapid method for the direct determination of Cd, Cr, Cu, Pb and Zn in soil was developed. The method was developed using three certified reference materials of soil: Eutric Cambisol, Orthic Luvisols and Rendzina, which differed in their matrix composition. Chemical modifiers were essential to achieve reproducible and interference-free signals for the analytes studied. The best results were obtained with a Pd/Mg(NO3)2 admixture for the determination of Cd, Pb and Zn and NH4F for Cu. The combination of W (as a permanent modifier) and Mg(NO3)2 provided well-defined signal profiles for Cr. The following spectral lines were used: Cd 228.8 nm, Cr 520.6 nm, Cu 218.2 nm, Pb 205.3 nm and Zn 307.6 nm. The limit of detection was 4.2 ng g− 1 for Cd, 1.1 μg g− 1 for Cr, 0.5 μg g− 1 for Cu, 1.3 μg g− 1 for Pb and 8.6 μg g− 1 for Zn for the maximum sample mass used. Under optimized conditions, the analyte and matrix were separated effectively in situ, and aqueous standards could be used for calibration.  相似文献   

12.
Reference materials for quantitative determination of Cd, Cr, Hg and Pb in polycarbonate were developed. Reference materials with two concentration level of elements were prepared by adding appropriate amounts of chemicals to a blank polycarbonate base material. It was shown that ten bottles with triplicate analysis are enough to demonstrate the homogeneity of these candidate reference materials. The statistical results also showed no significant trends in both short-term stability test for four weeks and long-term stability test for twelve months. The certification of the four elements was carried out by isotope-dilution-inductively coupled plasma mass spectrometry (ID-ICP-MS) with microwave-assisted digestion. Certification of candidate reference materials in a single laboratory was confirmed with interlaboratory comparison participated by a certain number of well-recognized testing laboratories in Korea. The certified values and expanded uncertainties (k = 2) for the candidate reference material with low level and the one with high level were (51.7 ± 2.1) mg kg−1 Cd, (103.8 ± 2.9) mg kg−1 Cd, (98.8 ± 4.5) mg kg−1 Cr, (1004 ± 49.8) mg kg−1 Cr, (107.4 ± 4.6) mg kg−1 Hg, (1133 ± 50.7) mg kg−1 Hg, (94.8 ± 3.7) mg kg−1 Pb and (988.4 ± 53.6) mg kg−1 Pb, respectively. The reference materials developed in this study demonstrated their suitability for the quality assurance in Cd, Cr, Hg and Pb analysis for the implementation of RoHS Directive.  相似文献   

13.
Sensitive and stable monitoring of heavy metals in seawater using screen-printed electrodes (SPE) is presented. The analytical performance of SPE coupled with square wave anodic stripping voltammetry (SWASV) for the simultaneous determination of Pb and Cd in seawater samples, in the low μg L−1 range, is evaluated. The stripping response for the heavy metals following 2 min deposition was linear over the concentration range examined (10-2000 μg L−1) with detection limits of 1.8 and 2.9 μg L−1 for Pb and Cd, respectively. The accuracy of the method was validated by analyzing metal contents in different spiked seawater samples and comparing these results to those obtained with the well-established anodic stripping voltammetry using the hanging mercury drop electrode. Moreover, a certified reference material was also used and the results obtained were satisfactory.  相似文献   

14.
Somer G  Unal U 《Talanta》2004,62(2):323-328
Using the DPP polarograms of wet digested cauliflower sample in acetate buffer at pH values of 2, 4 and 6, Fe, Zn, Mo, Se, Cr, Cd, Pb, Ti and Cu quantities were determined. The best separation and determination conditions for Zn, Se and Mo was pH 2; for Cr, Zn, Mo and As was pH 4; for Pb pH 6, for Ti, Cu and Fe was pH 6-7 EDTA, for Cd pH 2 EDTA and for lead pH 6, all in acetate buffer. The trace element ranges for cauliflowers from two different seasons were (first figure for winter, the second for summer) for Se 120-250 μg g−1, Fe 70-85 μg g−1, Cu 320-150 μg g−1, Ti 90-120 μg g−1, Cr 130-630 μg g−1, Zn 90-550 μg g−1, Mo 170-230 μg g−1, Cd 20 μg g−1 (in winter) and Pb 130-300 μg g−1 in dry sample. Cd was under the detection limit in summer. The length of digestion time had no effect on the recovery of copper, iron, molybdenum and zinc between 15 and 3 h of digestion.  相似文献   

15.
A high-performance liquid chromatography-fluorescence detection method was optimized and validated to determine tetracyclines residues in bovine milk. Post-column derivatization using metal complexation in non-aqueous reagent increased the fluorescence of chelates by a factor up to 2.54 compared to water (signal-to-noise ratio enhancement). Overall recoveries ranged from 61 to 115%, with RSDr from 5 to 15% (n = 54). Detection limits ranged from 5 to 35 μg kg−1. Limits of quantification were established at 50 μg kg−1. Decision limits (CCα) were 109, 108 and 124 μg kg−1 and detection capabilities (CCβ) 119, 117 and 161 μg kg−1 for oxytetracycline, tetracycline and chlortetracycline, respectively. The method was applied successfully in a national monitoring program.  相似文献   

16.
An interference-free, fast, and simple method is proposed for Pb determination in environmental solid samples combining slurry sampling and electrothermal atomic absorption spectrometry. Samples were ground to an adequate particle size and slurries were prepared by weighing from 0.05 g to 0.20 g of dry sediment, adding nitric acid, and a solution containing 0.1% Triton X-100. Ultrasonic agitation was employed for slurries homogenization. Analytical variables including acid pre-treatment conditions, particle size, slurry stability, temperature program of the graphite furnace, and type and concentration of the chemical modifier were studied. The undesirable effects of potential non-specific and spectral interferences on Pb signal were also taken into account. Continuum source and self-reversal methods for background correction were evaluated and compared. For calibration, synthetic acid solutions of Pb were employed. Calibration was linear within the range 1-30 μg L−1 and 5-30 μg L−1 when the 217.0 nm and 283.3 nm analytical lines were used. Correlation coefficients of 0.9992 and 0.9997 were obtained. Using optimized conditions, limits of detection (3σ) of 0.025 μg g−1 and 0.1 μg g−1 were achieved for the 217.0 nm and 283.3 nm analytical lines, respectively. The method was successfully applied to the determination of lead in soil, contaminated soil, municipal sludge, and sediment samples. The accuracy was assessed by the analysis of two certified reference materials: municipal sludge (QC MUNICIPAL SLUDGE A) and lake sediment (TRAP-LRM from IJS).  相似文献   

17.
The usefulness of the secondary line at 252.744 nm and the approach of side pixel registration were evaluated for the development of a method for sequential multi-element determination of Cu, Fe, Mn and Zn in soil extracts by high-resolution continuum source flame atomic absorption spectrometry (HR-CS FAAS). The influence of side pixel registration on the sensitivity and linearity was investigated by measuring at wings (248.325, 248.323, 248.321, 248.329, and 248.332 nm) of the main line for Fe at 248.327 nm. For the secondary line at 252.744 nm or side pixel registration at 248.325 nm, main lines for Cu (324.754 nm), Mn (279.482 nm) and Zn (213.875 nm), sample flow-rate of 5.0 mL min−1 and calibration by matrix matching, analytical curves in the 0.2-1.0 mg L−1 Cu, 1.0-20.0 mg L−1 Fe, 0.2-2.0 mg L−1 Mn, 0.1-1.0 mg L−1 Zn ranges were obtained with linear correlations better than 0.998. The proposed method was applied to seven soil samples and two soil reference materials (IAC 277; IAC 280). Results were in agreement at a 95% confidence level (paired t-test) with reference values. Recoveries of analytes added to soil extracts containing 0.15 and 0.30 mg L−1 Cu, 7.0 and 14 mg L−1 Fe, 0.60 and 1.20 mg L−1 Mn, 0.07 and 0.15 mg L−1 Zn, varied within the 94-99, 92-98, 93-101, and 93-103% intervals, respectively. The relative standard deviations (n = 12) were 2.7% (Cu), 1.4% (Fe - 252.744 nm), 5.7% (Fe - 248.325 nm), 3.2% (Mn) and 2.8% (Zn) for an extract containing 0.35 mg L−1 Cu, 14 mg L−1 Fe, 1.1 mg L−1 Mn and 0.12 mg L−1 Zn. Detection limits were 5.4 μg L−1 Cu, 55 μg L−1 Fe (252.744 nm), 147 μg L−1 Fe (248.325 nm), 3.0 μg L−1 Mn and 4.2 μg L−1 Zn.  相似文献   

18.
The status of pesticide pollution in Tanzania   总被引:1,自引:0,他引:1  
The paper summarises the findings of recent studies carried out to assess the levels of pesticide residues in water, sediment, soil and some biota collected from different parts of Tanzania. Although the intention is to cover the whole country, so far the studies have focused on areas with known large-scale pesticide use (Southern Lake Victoria and its basin, TPC sugar Plantations in Kilimanjaro region, Dar es Salaam coast, Mahonda-Makoba basin in Zanzibar) and a former pesticide storage area at Vikuge Farm in Coast region). Analysis of the cleaned extracts in GC-ECD/NPD revealed the dominance of organochlorines in all samples. Generally, low levels of residues were found in areas associated with agricultural pesticide use but the levels in the former storage areas were substantially high. DDT and HCH were dominant in all the studied areas. In the former areas, levels of ∑DDT in water, sediments and soil were up to 2 μg L−1, 700 μg kg−1 and 500 μg kg−1, respectively, while those of ∑HCH were up to 0.2 μg L−1, 132 μg kg−1 and 60 μg kg−1, respectively. The levels in aquatic biota were much higher than those in the water most likely due to bioaccumulation. In the former storage area at Vikuge the levels of pesticides in the topsoil were alarmingly high. Their concentrations were up to 282,000 mg kg−1 dry weight for ∑DDT and up to 63,000 mg kg−1 for ∑HCH. A herbicide, pendimethalin [N-(1-ethylpropyl)-2,6-dinitro-3,4-xylidine], was also found at concentrations up to 41,000 mg kg−1 dry weight. Thus the total pesticide content in the soil was almost 40%. Following these findings the area is now earmarked to be a demonstration site for a proposed GEF project ‘Bioremediation of POPs impacted soils in East Africa’.  相似文献   

19.
Bismuth and Sb were evaluated as internal standards (IS) to minimize matrix effects on the direct and simultaneous determination of As, Cu, and Pb in cachaça by graphite furnace atomic absorption spectrometry using W-coated platform plus Pd-Mg(NO3)2 as modifier. For 20 μL injected sample, calibration within the 0.5-10 μg L−1 As, 100-1000 μg L−1 Cu and 0.5-30 μg L−1 Pb intervals were established using the ratios As absorbance to Sb absorbance, Cu absorbance to Bi absorbance and Pb absorbance to Bi absorbance versus analytes concentration, respectively. Typical linear correlations of 0.998, 0.999 and 0.999 were, respectively, obtained. The proposed method was applied for direct determination of As, Cu and Pb in 10 commercial cachaça samples and results were in agreement with those obtained by inductively coupled plasma mass spectrometry at 95% confidence level. The found characteristic masses were 30 pg As, 274 pg Cu and 39 pg Pb. The useful lifetime of the graphite tube was around 760 firings. Recoveries of As, Cu and Pb added to cachaça samples varied, respectively, from 98% to 109%, 97% to 108% and 98% to 104% with internal standards and from 48% to 54%, 53% to 92% and 62% to 97% without internal standards. The limits of detection were 0.13 μg L−1 As, 22 μg L−1 Cu and 0.05 μg L−1 Pb. The relative standard deviations (n = 12) for a spiked sample containing 20 μg L−1 As, Pb and 500 μg L−1 Cu were 1.6%, 1.0%, and 1.8% with IS and 4.3%, 5.2%, and 5.5% without IS.  相似文献   

20.
The determination of cadmium (Cd) in fertilizers is of major interest, as this element can cause growth problems in plants, and also affect animals and humans. High-resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS GF AAS) with charge-coupled device (CCD) array detection overcomes several of the limitations encountered with conventional line source AAS, especially the problem of accurate background measurement and correction. In this work an analytical method has been developed to determine Cd in fertilizer samples by HR-CS GF AAS using slurry sampling. Both a mixture of 10 μg Pd + 6 μg Mg in solution and 400 μg of iridium as permanent modifier have been investigated and aqueous standards were used for calibration. Pyrolysis and atomization temperatures were 600 °C and 1600 °C for the Pd-Mg modifier, and 500 °C and 1600 °C for Ir, respectively. The results obtained for Cd in the certified reference material NIST SRM 695 (Trace Elements in Multi-Nutrient Fertilizer) of 16.7 ± 1.3 μg g−1 and 16.4 ± 0.75 μg g−1 for the Pd-Mg and Ir modifier, respectively, were statistically not different from the certified value of 16.9 ± 0.2 μg g−1 on a 95% confidence level; however, the results obtained with the Ir modifier were significantly lower than those for the Pd-Mg modifier for most of the samples. The characteristic mass was 1.0 pg for the Pd-Mg modifier and 1.1 pg Cd for the Ir modifier, and the correlation coefficients (R2) of the calibration were > 0.99. The instrumental limits of detection were 7.5 and 7.9 ng g−1, and the limits of quantification were 25 and 27 ng g−1 for Pd-Mg and Ir, respectively, based on a sample mass of 5 mg. The cadmium concentration in the investigated samples was between 0.07 and 5.5 μg g−1 Cd, and hence below the maximum value of 20 μg g−1 Cd permitted by Brazilian legislation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号