首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
The present work reports a quercetin-modified wax-impregnated graphite electrode (Qu/WGE) prepared through an electrochemical oxidation procedure in quercetin-containing phosphate buffer solution (PBS), for the purpose of detecting uric acid (UA) in the presence of ascorbic acid (AA). During modification quercetin was oxidized to the corresponding quinonic structure, and in the blank buffer solution the electrodeposited film exhibits a voltammetric response anticipated for the surface-immobilized quercetin. Retarding effect of the film towards the reaction of anionic species was found; therefore the pH of sample solutions was selected to ensure the analyte in molecular form. At suitable pHs the Qu/WGE shows excellent electrocatalytic effect towards the oxidation of both AA and UA, and separates the voltammetric signal of UA from AA by about 280 mV, allowing simultaneous detection of these two species. A linear relation between the peak current and concentration was obtained for UA in the range of 1-50 μM in the presence of 0.5 mM AA, with a detection limit 1.0 μM (S/N = 3). This sensor was stable, reproducible and outstanding for long-term use.  相似文献   

2.
Palraj Kalimuthu 《Talanta》2010,80(5):1686-319
This paper describes the simultaneous determination of ascorbic acid (AA), dopamine (DA), uric acid (UA) and xanthine (XN) using an ultrathin electropolymerized film of 2-amino-1,3,4-thiadiazole (p-ATD) modified glassy carbon (GC) electrode in 0.20 M phosphate buffer solution (pH 5.0). Bare GC electrode failed to resolve the voltammetric signals of AA, DA, UA and XN in a mixture. On the other hand, the p-ATD modified electrode separated the voltammetric signals of AA, DA, UA and XN with potential differences of 110, 152 and 392 mV between AA-DA, DA-UA and UA-XN, respectively and also enhanced their oxidation peak currents. The modified electrode could sense 5 μM DA and 10 μM each UA and XN even in the presence of 200 μM AA. The oxidation currents were increased from 30 to 300 μM for AA, 5 to 50 μM for DA and 10 to 100 μM for each UA and XN, and the lowest detection limit was found to be 2.01, 0.33, 0.19 and 0.59 μM for AA, DA, UA and XN, respectively (S/N = 3). The practical application of the present modified electrode was demonstrated by the determination of AA, UA and XN in human urine samples.  相似文献   

3.
A new type of tryptophan-functionalized graphene nanocomposite (Trp-GR) was synthesized by utilizing a facile ultrasonic method via ππ conjugate action between graphene (GR) and tryptophan (Trp) molecule. The material as prepared had well dispersivity in water and better conductivity than pure GR. The surface morphology of Trp-GR was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Raman spectroscopy. The electrochemical behaviors of ascorbic acid (AA), dopamine (DA), and uric acid (UA) were investigated by cyclic voltammetry (CV) on the surface of Trp-GR. The separation of the oxidation peak potentials for AA–DA, DA–UA and UA–AA was about 182 mV, 125 mV and 307 mV, which allowed simultaneously determining AA, DA, and UA. Differential pulse voltammetery (DPV) was used for the determination of AA, DA, and UA in their mixture. Under optimum conditions, the linear response ranges for the determination of AA, DA, and UA were 0.2–12.9 mM, 0.5–110 μM, and 10–1000 μM, with the detection limits (S/N = 3) of 10.09 μM, 0.29 μM and 1.24 μM, respectively. Furthermore, the modified electrode was investigated for real sample analysis.  相似文献   

4.
In the present work, a tube-like structure of graphene hybrid as modifier to fabricate electrode for simultaneous detection of ascorbic acid (AA), dopamine (DA), uric acid (UA) and tryptophan (Trp) was reported. The hybrid was synthesized by a simple method based on graphene sheets (GS) and 3,4,9,10-perylenetetracarboxylic acid (PTCA) via π–π stacking interaction under ultrasonic condition. The combination of GS and PTCA could effectively improve the dispersion of GS, owing to PTCA with the carboxylic-functionalized interface. Comparing with pure GS or PTCA modified electrode, GS–PTCA displayed high catalytic activity and selectivity toward the oxidation of AA, DA, UA, and Trp. Moreover, cyclic voltammetry, different pulse voltammetry and scanning electron microscopy were employed to characterize the sensors. The experiment results showed that the linear response range for simultaneous detection of AA, DA, UA, and Trp were 20–420 μM, 0.40–374 μM, 4–544 μM and 0.40–138 μM, respectively, and the detection limits were 5.60 μM, 0.13 μM, 0.92 μM and 0.06 μM (S/N = 3). Importantly, the proposed method offers promise for simple, rapid, selective and cost-effective analysis of small biomolecules.  相似文献   

5.
A novel electrode was developed through electrodepositing gold nanoparticles (GNPs) on overoxidized-polyimidazole (PImox) film modified glassy carbon electrode (GCE). The combination of GNPs and the PImox film endowed the GNPs/PImox/GCE with good biological compatibility, high selectivity and sensitivity and excellent electrochemical catalytic activities towards ascorbic acid (AA), dopamine (DA), uric acid (UA) and tryptophan (Trp). In the fourfold co-existence system, the peak separations between AA–DA, DA–UA and UA–Trp were large up to 186, 165 and 285 mV, respectively. The calibration curves for AA, DA and UA were obtained in the range of 210.0–1010.0 μM, 5.0–268.0 μM and 6.0–486.0 μM with detection limits (S/N = 3) of 2.0 μM, 0.08 μM and 0.5 μM, respectively. Two linear calibrations for Trp were obtained over ranges of 3.0–34.0 μM and 84.0–464.0 μM with detection limit (S/N = 3) of 0.7 μM. In addition, the modified electrode was applied to detect AA, DA, UA and Trp in samples using standard addition method with satisfactory results.  相似文献   

6.
Nanocrystalline graphite-like pyrolytic carbon film (PCF) electrode fabricated by a non-catalytic chemical vapor deposition (CVD) process was used for the simultaneous electrochemical sensing of ascorbic acid (AA), dopamine (DA), and uric acid (UA). The electrode was studied with respect to changes in electrocatalytic activity caused by a simple and fast electrochemical pretreatment. The anodized electrode exhibited excellent performance compared to many chemically modified electrodes in terms of detection limit, linear dynamic range, and sensitivity. Differential pulse voltammetry (DPV) was used for the simultaneous determination of ternary mixtures of DA, AA, and UA. Under optimum conditions, the detection limits were 2.9 μM for AA, 0.04 μM for DA, and 0.03 μM for UA with sensitivities of 0.078, 5.345, and 6.192 A M−1, respectively. The peak separation was 219 mV between AA and DA and 150 mV between DA and UA. No electrode fouling was observed and good reproducibility was obtained in all the experiments. The sensor was successfully applied for the assay of DA in an injectable drug and UA in human urine by using standard addition method.  相似文献   

7.
Zhao Y  Gao Y  Zhan D  Liu H  Zhao Q  Kou Y  Shao Y  Li M  Zhuang Q  Zhu Z 《Talanta》2005,66(1):51-57
The electrochemistry of dopamine (DA) was studied by cyclic voltammetry at a glassy carbon electrode modified by a gel containing multi-walled carbon nanotubes (MWNTs) and room-temperature ionic liquid of 1-octyl-3-methylimidazolium hexafluorophosphate (OMIMPF6). The thickness of gel on the surface of the electrode has to be controlled carefully because the charging currents increase with the modified layer being thicker. The anodic peaks of DA, ascorbic acid (AA) and uric acid (UA) in their mixture can be well separated since the peak potential of AA is shifted to more negative values, while that of UA is shifted to more positive values due to the modified electrode. At pH 7.08 the three peaks are separated ca. 0.20 and 0.15 V, respectively; hence DA can be determined in the presence of UA and more than 100 times excess of AA. Under optimum conditions linear calibration graphs were obtained over the DA concentration range 1.0 × 10−6 to 1.0 × 10−4 M. The detection limit of the current technique was found to be 1.0 × 10−7 M based on the signal-to-noise ratio of 3. The modified electrode has been successfully applied for the assay of DA in human blood serum. This work provides a simple and easy approach to selectively detect dopamine in the presence of ascorbic acid and uric acid.  相似文献   

8.
This article reports on a novel microsensor for amperometric measurement of ascorbic acid (AA) under acidic conditions (pH 2) based on a carbon fiber microelectrode (CFME) modified with nickel oxide and ruthenium hexacyanoferrate (NiO-RuHCF). This sensing layer was deposited electrochemically in a two-step procedure involving an initial galvanostatic NiO deposition followed by a potentiodynamic RuHCF deposition from solutions containing the precursor salts. Several important parameters were examined to characterize and optimize the NiO-RuHCF sensing layer with respect to its current response to AA by using cyclic voltammetry, and scanning electron microscopy-energy dispersive X-ray spectroscopy methods. With the NiO-RuHCF coated CFME, the AA oxidation potential under acidic conditions was shifted to a less positive value for about 0.2 V (Ep of ca. 0.23 V vs. Ag/AgCl) as compared to a bare CFME, which greatly improves the electrochemical selectivity. Using the hydrodynamic amperometry mode, the current vs. AA concentration in 0.01 M HCl, at a selected operating potential of 0.30 V, was found to be linear over a wide range of 10-1610 μM (n = 22, r = 0.999) with a calculated limit of detection of 1.0 μM. The measurement repeatability was satisfactory with a relative standard deviation (r.s.d.) ranging from 4% to 5% (n = 6), depending on the AA concentration, and with a sensor-to-sensor reproducibility (r.s.d.) of 6.9% at 100 μM AA. The long-term reproducibility, using the same microsensor for 112 consecutive measurements of 20 μM AA over 11 h of periodic probing sets over 4 days, was 16.1% r.s.d., thus showing very good stability at low AA levels and suitability for use over a prolonged period of time. Moreover, using the proposed microsensor, additionally coated with a protective cellulose acetate membrane, the calibration plot obtained in the extremely complex matrix of real undiluted gastric juice was linear from 10 to 520 μM (n = 14, r = 0.998). These results demonstrated the unique featuring of the proposed NiO-RuHCF microsensor under acidic conditions with enhanced sensitivity and stability and proved its promising potentiality for direct amperometric probing of AA at physiological levels in real gastric juice environments.  相似文献   

9.
This paper describes the simultaneous determination of epinephrine (EP), uric acid (UA) and xanthine (XN) in the presence of ascorbic acid (AA) using electropolymerized ultrathin film of 5-amino-1,3,4-thiadiazole-2-thiol (p-ATT) modified glassy carbon (GC) electrode in 0.2 M phosphate buffer solution (pH 5). Although bare GC electrode resolves the voltammetric signals of AA and XN, it fails to resolve the voltammetric signals of EP and UA in a mixture. However, the p-ATT modified electrode not only separates the voltammetric signals of AA, EP, UA and XN with potential difference of 150, 120 and 400 mV between AA-EP, EP-UA and UA-XN, respectively but also shows higher oxidation current for these molecules. The p-ATT modified electrode exhibits excellent selectivity towards the oxidation of EP, UA and XN in the presence of 40-fold higher concentration of AA. Further, the p-ATT modified electrode was also used for the selective determination of EP in the presence of 40-fold higher concentrations of AA, UA and XN. Using amperometric method, we achieved the lowest detection of 40 nM EP and 60 nM each UA and XN. The amperometric current response was increased linearly with increasing EP concentration in the range of 4.0 × 10−8 to 4.0 × 10−5 M and the detection limit was found to be 27 × 10−11 M (S/N = 3). The practical application of the present modified electrode was demonstrated by determining the concentration of EP in epinephrine tartrate injection and XN in human urine samples.  相似文献   

10.
A procedure for the standardization of ensembles of gold nanodisk electrodes (NEE) of 30 nm diameter is presented, which is based on the analytical comparison between experimental cyclic voltammograms (CV) obtained at the NEEs in diluted solutions of redox probes and CV patterns obtained by digital simulation. Possible origins of defects sometimes found in NEEs are discussed. Selected NEEs are then employed for the study of the electrochemical oxidation of iodide in acidic solutions. CV patterns display typical quasi-reversible behavior which involves associated chemical reactions between adsorbed and solution species. The main CV characteristics at the NEE compare with those observed at millimeter sized gold disk electrodes (Au-macro), apart a slight shift in E1/2 values and slightly higher peak to peak separation at the NEE. The detection limit (DL) at NEEs is 0.3 μM, which is more than one order of magnitude lower than DL at the Au-macro (4 μM). The mechanism of the electrochemical oxidation of iodide at NEEs is discussed. Finally, NEEs are applied to the direct determination of iodide at micromolar concentration levels in real samples, namely in some ophthalmic drugs and iodized table salt.  相似文献   

11.
Li J  Lin XQ 《Analytica chimica acta》2007,596(2):222-230
A novel biosensor was fabricated by electrochemical deposition of gold nanoclusters on ultrathin overoxidized polypyrrole (PPyox) film, formed a nano-Au/PPyox composite on glassy carbon electrode (nano-Au/PPyox/GCE). The properties of the nanocomposite have been characterized by field emission scanning electron microscope (FE-SEM), X-ray photoelectron spectroscopy (XPS), powder X-ray diffraction (XRD) and electrochemical investigations. The nano-Au/PPyox/GCE had strongly catalytic activity toward the oxidation of epinephrine (EP), uric acid (UA) and ascorbic acid (AA), and resolved the overlapping voltammetric response of EP, UA and AA into three well-defined peaks with a large anodic peak difference. The catalytic peak currents obtained from differential pulse voltammetry increased linearly with increasing EP and UA concentrations in the range of 3.0 × 10−7 to 2.1 × 10−5 M and 5.0 × 10−8 to 2.8 × 10−5 M with a detection limit of 3.0 × 10−8 and 1.2 × 10−8 M (s/n = 3), respectively. The results showed that the modified electrode can selectively determine EP and UA in the coexistence of a large amount of AA. In addition, the sensor exhibited excellent sensitivity, selectivity and stability. The nano-Au/PPyox/GCE has been applied to determination of EP in epinephrine hydrochloride injection and UA in urine samples with satisfactory results.  相似文献   

12.
We report a new nonenzymatic amperometric detection of ascorbic acid (AA) using a glassy carbon (GC) disk electrode modified with hollow gold/ruthenium (hAu–Ru) nanoshells, which exhibited decent sensing characteristics. The hAu–Ru nanoshells were prepared by the incorporation of Ru on hollow gold (hAu) nanoshells from Co nanoparticle templates, which enabled AA selectivity against glucose without aid of enzyme or membrane. The structure and electrocatalytic activities of the hAu–Ru catalysts were characterized by spectroscopic and electrochemical techniques. The hAu–Ru loaded on GC electrode (hAu–Ru/GC) showed sensitivity of 426 μA mM−1 cm−2 (normalized to the GC disk area) for the linear dynamic range of <5 μM to 2 mM AA at physiological pH. The response time and detection limit were 1.6 s and 2.2 μM, respectively. Furthermore, the hAu–Ru/GC electrode displayed remarkable selectivity for ascorbic acid over all potential biological interferents, including glucose, uric acid (UA), dopamine (DA), 4-acetamidophenol (AP), and nicotinamide adenine dinucleotide (NADH), which could be especially good for biological sensing.  相似文献   

13.
Poly(3,4-ethylenedioxythiophene-co-(5-amino-2-naphthalenesulfonic acid)) (PEDOT-PANS) film modified glassy carbon electrode was prepared by electrochemical polymerization technique. The properties of modified electrode was studied. It was found that the electrochemical properties of modified electrode was very much dependent on the experimental conditions, such as monomer oxidation potential and pH. The modified electrode surface was characterized by scanning electron microscopy (SEM). The PEDOT-PANS film modified electrode shows electrocatalytic activity toward oxidation of dopamine (DA) in acetate buffer solution (pH 5.0) and results in a marked enhancement of the current response. The linear sweep voltammetric (LSV) peak heights are linear with DA concentration from 2 × 10−6 to 1 × 10−5 M. The detection limit is 5 × 10−7 M. More over, the interferences of ascorbic acid (AA) and uric acid (UA) were effectively diminished. This work provides a simple and easy approach for selective determination of dopamine in the presence of ascorbic acid and uric acid.  相似文献   

14.
Thiagarajan S  Chen SM 《Talanta》2007,74(2):212-222
A novel biosensor was fabricated by electrochemical deposition of platinum and gold nanoparticles (nanoAu) with l-Cysteine on glassy carbon electrode. It was found that the nanoAu particle size distribution range was (50-80 nm), and the platinum particle size range was (200-300 nm). The hybrid film could be produced on gold and transparent indium tin oxide electrodes for different kind of studies such as electrochemical quartz crystal microbalance (EQCM), scanning electron microscopy (SEM), atomic force microscopy (AFM) and X-ray diffraction (XRD) and electrochemical studies. The PtAu hybrid film was applied to the electro catalytic oxidation of dopamine (DA), ascorbic acid (AA) and uric acid (UA) at pH 4.0 using cyclic voltammetry (CV) and differential pulse voltammetry (DPV) techniques. The modified electrode was quite effective not only to detect DA, AA and UA individually but also in simultaneous determination of these species in a mixture. The overlapping anodic peaks of DA, AA and UA were resolved into three well-defined voltammetric peaks in CV and DPV. The catalytic peak currents obtained from CV and DPV increased linearly with concentration. The relative standard deviation (% R.S.D., n = 10) for AA, DA and UA were less than 2.0% and DA, AA and UA can be determined in the ranges of 0.103-1.65, 0.024-0.384 and 0.021-0.336 mM, respectively. In addition, the modified electrode also shows good sensitivity, and stability. Satisfactory results were achieved for the determination of DA, AA and UA in dopamine injection solution, vitamin C tablets and human urine samples.  相似文献   

15.
A simple and reliable method for simultaneous electrochemical determination of ascorbic acid (AA) and dopamine (DA) is presented in this work. It was based on the use of the cationic surfactant cetylpyridinium chloride (CPC) that enables the separation of the oxidation peaks potential of AA and DA. Cyclic voltammetry (CV) as well as pulse differential voltammetry (PDV) were used in order to verify the voltammetric behaviour in micellar media. In the cationic surfactant CPC, a remarkable electrostatic interaction is established with negatively charged AA, as a consequence, the oxidation peak potential shifted toward less positive potential and the peak current increased. On the other hand, the positively charged DA is repelled from the electrode surface and the oxidation peak potential shifts toward more positive potential in comparison to the bare electrode. Therefore, the common overlapped oxidation peaks of AA and DA can be circumventing by using CPC. Parameter that affects the Epa and Ipa such as CPC concentration and pH were studied. Under optimised conditions, the method presented a linear response to AA and DA in the concentration range from 5 to 75 μmol L−1 and 10 to 100 μmol L−1, respectively. The proposed method was successfully applied to the simultaneous determination of AA and DA in dopamine hydrochloride injection (DHI) samples spiked with AA.  相似文献   

16.
A platinum (Pt) electrode modified by single-walled carbon nanotubes (SWNTs) and phytic acid (PA) was investigated by voltammetric methods in buffer solution. The PA-SWNTs/Pt-modified electrode demonstrated substantial enhancements in electrochemical sensitivity and selectivity towards dopamine (DA) in the presence of L-ascorbic acid (AA) and uric acid (UA). The PA-SWNTs films promoted the electron transfer reaction of DA, while the PA film, acting as a negatively charged linker, combined with the positively charged DA to induced DA accumulation in the film at pH under 7.4. However, the PA film restrained the electrochemical response of the negatively charged AA due to the electrostatic repulsion. The anodic peak potentials of DA, AA and UA could be separated by electrochemical techniques, and the interferences from AA and UA were effectively eliminated in the DA determination. Linear calibration plots were obtained in the DA concentration range of 0.2-10 μM and the detection limit of the DA oxidation current was determined to be 0.08 μM at a signal-to-noise ratio of 3. The results indicated that the modified electrode can be used to determine DA without interference from AA and UA, while ensuring good sensitivity, selectivity, and reproducibility.  相似文献   

17.
A new detection system based on microdialysis sampling and chemiluminescence (CL) reaction was developed for in vivo monitoring of uric acid (UA) with high sensitivity, selectivity and accuracy. The uric acid is indirectly monitored by CL detection of enzymatic reaction product formation (H2O2), catalyzed by Uricase. A microprobe was modified and coated with immobilized enzyme through a Streptavidin-biotin mediated linker by using a chitosan support membrane, polyurethane trapped ferrocene film is employed to protect the probe surface and diminish the interference from reductant molecules, which often are present in the blood (e.g. ascorbic acid). The earlier mentioned probe and the constructed sensor can detect uric acid in the range of 0.01-1 mM with detection limit (3σ) of 5 μM. Finally, the system is used to monitor uric acid (UA) variation through an acute myocardial infarction (AMI) model. Following AMI-induced oxidative stress, the UA level decreases continuously, thus suggesting that UA plays a protective role as a substitute antioxidant. Furthermore, the in vivo monitoring results show good agreement with those obtained by a standard method, and the procedure is recommended for in vivo and real time monitoring of UA. In addition, the proposed method can be more accurate since the UA may be potentially oxidized by in vitro exposure to oxygen in the presence of a catalyst.  相似文献   

18.
A new device combining microdialysis with electrochemical microsensor was developed. It can be applied to monitor the biomolecules in the brain for biological and pharmaceutical research. In this paper, the device was applied to simultaneously determine ascorbic acid (AA) and 5-hydroxyindole-3-acetic acid (5-HIAA) in rat striatum. The microsensor used for the device was poly (sulphosalicylic acid) microsensor, which exhibited a good electrocatalytic effect on oxidization of AA and 5-HIAA. The oxidation currents measured by differential pulse voltammetry (DPV) were linear for AA in the range of 0.02-1.0 mmol l−1, and for 5-HIAA from 0.5 to 10.0 μmol l−1 (r=0.9998 and 0.9991, respectively). The detection limits were calculated to be 0.01 mmol l−1 for AA and 0.25 μmol l−1for 5-HIAA (S/N=3). Studies also showed that co-existing substances in biological fluids did not interfere with AA and 5-HIAA determination when using this microsensor. Since, the substances in the microdialysate are easily oxidized by air, the microdialysate in this device was under the protection of N2. It was found that the concentrations of AA and 5-HIAA in rat striatum were 215±5 and 6.21±0.61 μmol l−1 (mean±S.E.M., n=7), respectively with this device under the protection of N2. In addition, the effect of the nitric oxide donor, sodium nitroprusside (SNP), on 5-HIAA in the rat striatum was investigated. It was found that a high concentration of SNP (1.0 mmol l−1) resulted in a 34% increase in 5-HIAA level.  相似文献   

19.
In this study, an electrochemical ascorbic acid (AA) sensor was constructed based on a glassy carbon electrode modified with palladium nanoparticles supported on graphene oxide (PdNPs-GO). PdNPs with a mean diameter of 2.6 nm were homogeneously deposited on GO sheets by the redox reaction between PdCl42− and GO. Cyclic voltammetry and amperometric methods were used to evaluate the electrocatalytic activity towards the oxidation of AA in neutral media. Compared to a bare GC or a Pd electrode, the anodic peak potential of AA (0.006 V) at PdNPs-GO modified electrode was shifted negatively, and the large anodic peak potential separation (0.172 V) of AA and dopamine (DA), which could contribute to the synergistic effect of GO and PdNPs, was investigated. A further amperometric experiment proved that the proposed sensor was capable of sensitive and selective sensing of AA even in the presence of DA and uric acid. The modified electrode exhibited a rapid response to AA within 5 s and the amperometric signal showed a good linear correlation to AA concentration in a broad range from 20 μM to 2.28 mM with a correlation coefficient of R = 0.9991. Moreover, the proposed sensor was applied to the determination of AA in vitamin C tablet samples. The satisfactory results obtained indicated that the proposed sensor was promising for the development of novel electrochemical sensing for AA determination.  相似文献   

20.
The present study reports the simultaneous determination of ascorbic acid (AA), dopamine (DA) and uric acid (UA) in 0.20 M phosphate buffer solution (pH 5.0) using electropolymerized ultrathin film of 5-amino-2-mercapto-1,3,4-thiadiazole (AMT) on glassy carbon (GC) electrode. The bare GC electrode does not separate the voltammetric signals of AA, DA and UA. However, electropolymerized AMT (p-AMT) modified GC electrode not only resolved the voltammetric signals of AA, DA and UA but also dramatically enhanced their oxidation peak currents when compared to bare GC electrode. The enhanced oxidation currents for AA, DA and UA at p-AMT modified electrode are due to the electrostatic interactions between them and the polymer film. Using amperometric method, we achieved the lowest detection of 75 nM AA, 40 nM DA and 60 nM UA at p-AMT modified electrode. The amperometric current was linearly increased from 200 nM to 0.80 mM for each AA, DA and UA and the lowest detection limit was found to be 0.92, 0.07 and 0.57 nM, respectively (S/N = 3). The practical application of the modified electrode was demonstrated by the determination of DA in dopamine hydrochloride injection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号