首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two new analytical methods have been developed as convenient and useful alternatives for simultaneous determination of hydrochlorothiazide (HCT) and propranolol hydrochloride (PRO) in pharmaceutical formulations. The methods are based on the first derivative of ratio spectra (DRS) and on partial least squares (PLS) analysis of the ultraviolet absorption spectra of the samples in the 250–350-nm region. The methods were calibrated between 8.7 and 16.0 mg L−1 for HCT and between 14.0 and 51.5 mg L−1 for PRO. An asymmetric full-factorial design and wavelength selection (277–294 nm for HCT and 297–319 for PRO) were used for the PLS method and signal intensities at 276 and 322 nm were used in the DRS method for HCT and PRO, respectively. Performance characteristics of the analytical methods were evaluated by use of validation samples and both methods showed to be accurate and precise, furnishing near quantitative analyte recoveries (100.4 and 99.3% for HCT and PRO by use of PLS) and relative standard deviations below 2%. For PLS the lower limits of quantification were 0.37 and 0.66 mg L−1 for HCT and PRO, respectively, whereas for DRS they were 1.15 and 3.05 mg L−1 for HCT and PRO, respectively. The methods were used for quantification of HCT and PRO in synthetic mixtures and in two commercial tablet preparations containing different proportions of the analytes. The results of the drug content assay and the tablet dissolution test were in statistical agreement (p < 0.05) with those furnished by the official procedures of the USP 29. Preparation of dissolution profiles of the combined tablet formulations was also performed with the aid of the proposed methods. The methods are easy to apply, use relatively simple equipment, require minimum sample pre-treatment, enable high sample throughput, and generate less solvent waste than other procedures. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

2.
A simple, sensitive and selective spectrophotometric method for simultaneous determination of tretinoin and minoxidil using partial least square (PLS) calibration and H-point standard addition method (HPSAM) is described. The results of the H-point standard addition method show that minoxidil and tretinoin can be determined simultaneously with the concentration ratio of tretinoin to minoxidil varying from 2: 1 to 1: 33 in mixed samples. A partial least squares multivariate calibration method for the analysis of binary mixtures of tretinoin and minoxidil was also developed. The total relative standard error for applying the PLS method to eleven synthetic samples in the concentration range of 0–10 μg mL−1 tretinoin and 0–32 μg mL−1 minoxidil was 2.59 %. Both proposed methods (PLS and HPSAM) were also successfully applied in the determination of tretinoin and minoxidil in several synthetic pharmaceutical solutions.  相似文献   

3.
A direct, reagent-free, ultraviolet spectroscopic method for the simultaneous determination of nitrate (NO3), nitrite (NO2), and salinity in seawater is presented. The method is based on measuring the absorption spectra of the raw seawater range of 200–300 nm, combined with partial least squares (PLS) regression for resolving the spectral overlapping of NO3, NO2, and sea salt (or salinity). The interference from chromophoric dissolved organic matter (CDOM) UV absorbance was reduced according to its exponential relationship between 275 and 295 nm. The results of the cross-validation of calibration and the prediction sets were used to select the number of factors (4 for NO3, NO2, and salinity) and to optimize the wavelength range (215–240 nm) with a 1 nm wavelength interval. The linear relationship between the predicted and the actual values of NO3, NO2, salinity, and the recovery of spiked water samples suggest that the proposed PLS model can be a valuable alternative method to the wet chemical methods. Due to its simplicity and fast response, the proposed PLS model can be used as an algorithm for building nitrate and nitrite sensors. The comparison study of PLS and a classic least squares (CLS) model shows both PLS and CLS can give satisfactory results for predicting NO3 and salinity. However, for NO2 in some samples, PLS is superior to CLS, which may be due to the interference from unknown substances not included in the CLS algorithm. The proposed method was applied to the analysis of NO3, NO2, and salinity in the Changjiang (Yangtze River) estuary water samples and the results are comparable with that determined by the colorimetric Griess assay.  相似文献   

4.
An environmentally friendly methodology has been developed for quality control analysis of emulsifiable concentrate pesticide formulations containing Malathion as active ingredient, using flow injection analysis (FIA)-Fourier transform infrared (FTIR) spectrometry. Five microlitres samples were directly injected into a 3 ml closed FIA manifold, in which 2 ml of CHCl3 was re-circulated at 1.96 ml min−1. After homogenisation and sample measurement, 2 μl volumes of a Malathion standard were injected, taking absorbance measurements after each injection. Peak height of the chemigrams, established from peak area values between 1027 and 1017 cm−1, corrected with a baseline fixed from 1087 to 993 cm−1 were employed for Malathion quantification using the standard addition approach, after reaching the steady state for every injection. A limit of detection of 12 μg ml−1 was achieved. Results found by standard addition-FTIR in commercially available samples showed a good correlation with those obtained by the reference gas chromatography-flame ionisation detection procedure.  相似文献   

5.
In this paper, a novel and precise analytical procedure has been developed for quantitative determination of sodium percarbonate (SPC) in washing powder. The method is based on the partial least squares (PLS) treatment of data obtained by attenuated total reflectance Fourier transform infrared (ATR FT-IR) spectrometry in wavenumber region of 1435-1342 cm−1. The statistical parameters such as R2, RSD, SEC and SECV have been evaluated, and number of factors, number of scan and the resolution have been optimized. In this method R2 and RSD for five independent analyses of a 0.552 g per 100 g solution of SPC, SEC for 10 standard samples and SECV for five validation samples were 0.998, 1.011, 0.002 and 0.039 respectively.Results obtained for six different commercial washing powders compared well with those obtained with a standard method.  相似文献   

6.
Predictions of grapevine yield and the management of sugar accumulation and secondary metabolite production during berry ripening may be improved by monitoring nitrogen and starch reserves in the perennial parts of the vine. The standard method for determining nitrogen concentration in plant tissue is by combustion analysis, while enzymatic hydrolysis followed by glucose quantification is commonly used for starch. Attenuated total reflectance Fourier transform infrared spectroscopy (ATR–FT-IR) combined with chemometric modelling offers a rapid means for the determination of a range of analytes in powdered or ground samples. ATR–FT-IR offers significant advantages over combustion or enzymatic analysis of samples due to the simplicity of instrument operation, reproducibility and speed of data collection. In the present investigation, 1880 root and wood samples were collected from Shiraz, Semillon and Riesling vineyards in Australia and Germany. Nitrogen and starch concentrations were determined using standard analytical methods, and ATR–FT-IR spectra collected for each sample using a Bruker Alpha instrument. Samples were randomly assigned to either calibration or test data sets representing two thirds and one third of the samples respectively. Signal preprocessing included extended multiplicative scatter correction for water and carbon dioxide vapour, standard normal variate scaling with second derivative and variable selection prior to regression. Excellent predictive models for percent dry weight (DW) of nitrogen (range: 0.10–2.65% DW, median: 0.45% DW) and starch (range: 0.25–42.82% DW, median: 7.77% DW) using partial least squares (PLS) or support vector machine (SVM) analysis for linear and nonlinear regression respectively, were constructed and cross validated with low root mean square errors of prediction (RMSEP). Calibrations employing SVM-regression provided the optimum predictive models for nitrogen (R2 = 0.98 and RMSEP = 0.07% DW) compared to PLS regression (R2 = 0.97 and RMSEP = 0.08% DW). The best predictive models for starch was obtained using PLS regression (R2 = 0.95 and RSMEP = 1.43% DW) compared to SVR (R2 = 0.95; RMSEP = 1.56% DW). The RMSEP for both nitrogen and starch is below the reported seasonal flux for these analytes in Vitis vinifera. Nitrogen and starch concentrations in grapevine tissues can thus be accurately determined using ATR–FT-IR, providing a rapid method for monitoring vine reserve status under commercial grape production.  相似文献   

7.
A 400‐MHz 1H nuclear magnetic resonance (NMR) spectroscopy and multivariate data analysis were used in the context of food surveillance to discriminate 46 authentic rice samples according to type. It was found that the optimal sample preparation consists of preparing aqueous rice extracts at pH 1.9. For the first time, the chemometric method independent component analysis (ICA) was applied to differentiate clusters of rice from the same type (Basmati, non‐Basmati long‐grain rice, and round‐grain rice) and, to a certain extent, their geographical origin. ICA was found to be superior to classical principal component analysis (PCA) regarding the verification of rice authenticity. The chemical shifts of the principal saccharides and acetic acid were found to be mostly responsible for the observed clustering. Among classification methods (linear discriminant analysis, factorial discriminant analysis, partial least squares discriminant analysis (PLS‐DA), soft independent modeling of class analogy, and ICA), PLS‐DA and ICA gave the best values of specificity (0.96 for both methods) and sensitivity (0.94 for PLS‐DA and 1.0 for ICA). Hence, NMR spectroscopy combined with chemometrics could be used as a screening method in the official control of rice samples. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
Proteins possess strong absorption features in the combination range (5000-4000 cm−1) of the near infrared (NIR) spectrum. These features can be used for quantitative analysis. Partial least squares (PLS) regression was used to analyze NIR spectra of lysozyme with the leave-one-out, full cross-validation method. A strategy for spectral range optimization with cross-validation PLS calibration was presented. A five-factor PLS model based on the spectral range between 4720 and 4540 cm−1 provided the best calibration model for lysozyme in aqueous solutions. For 47 samples ranging from 0.01 to 10 mg/mL, the root mean square error of prediction was 0.076 mg/mL. This result was compared with values reported in the literature for protein measurements by NIR absorption spectroscopy in human serum and animal cell culture supernatants.  相似文献   

9.
Resolution of binary mixtures of atenolol (ATE) and chlorthalidone (CTD) with minimum sample pre-treatment and without analyte separation has been successfully achieved, using a new and rapid method based on partial least squares (PLS1) analysis of UV spectral data. The simultaneous determination of both analytes was possible by PLS1 processing of sample absorbances between 255 and 300 nm for ATE and evaluation of absorbances in the 253–268 nm region for CTD. The mean recoveries for synthetic samples were 100.3±1.0% and 100.7±0.7% for ATE and CTD, respectively. Application of the proposed method to two commercial tablet preparations in the content uniformity test showed them to contain 103.5±0.8% and 104.9±1.8% ATE respectively, as well as 103.4±1.2% and 104.5±2.2% CTD. Use of this method also allowed the elaboration of dissolution profiles of the drugs in two commercial combined formulation products, through the simultaneous determination of both drugs during the dissolution test. At the dissolution time of 45 min specified by USP XXIV, both pharmaceutical formulations complied with the test.  相似文献   

10.
Near infrared (NIR) spectroscopy was used to simultaneously predict the concentrations of malvidin-3-glucoside (M3G), pigmented polymers (PP) and tannins (T) in red wine. A total of 495 samples from 32 commercial scale red wine fermentations over two vintages using two grape varieties (Cabernet Sauvignon and Shiraz), and also including as additional variables two types of fermenters, two different yeasts, and three fermentation temperatures were used. Samples were scanned in transmission mode (400-2500 nm) using a monochromator instrument (NIRSystems6500). Calibration equations were developed from high performance liquid chromatography (HPLC) and NIR data using partial least squares (PLS) regression with internal cross validation. Using PLS regression, very good calibration statistics (Rcal2>0.80) were obtained for the prediction of M3G, PP and T with standard deviation (S.D.)/standard error in cross validation (SECV) ratio (residual predictive deviation, RPD)) ranging from 1.8 to 5.8. It was concluded that near infrared spectroscopy could be used as rapid alternative method for the prediction of the concentration of phenolic compounds in red wine fermentations.  相似文献   

11.
A differential spectrophotometric method has been developed for the simultaneous quantitative determination of glucose (GLU), fructose (FRU) and lactose (LAC) in food samples. It relies on the different kinetic rates of the analytes in their oxidative reaction with potassium ferricyanide (K3Fe(CN)6) as the oxidant. The reaction data were recorded at the analytical wavelength (420 nm) of the K3Fe(CN)6 spectrum. Since the kinetic runs of glucose, fructose and lactose overlap seriously, the condition number was calculated for the data matrix to assist with the optimisation of the experimental conditions. Values of 80 °C and 1.5 mol l−1 were selected for the temperature and concentration of sodium hydroxide (NaOH), respectively. Linear calibration graphs were obtained in the concentration range of 2.96-66.7, 3.21-67.1 and 4.66-101 mg l−1 for glucose, fructose and lactose, respectively. Synthetic mixtures of the three reducing sugar were analysed, and the data obtained were processed by chemometrics methods, such as partial least square (PLS), principal component regression (PCR), classical least square (CLS), back propagation-artificial neural network (BP-ANN) and radial basis function-artificial neural network (RBF-ANN), using the normal and the first-derivative kinetic data. The results show that calibrations based on first-derivative data have advantages for the prediction of the analytes and the RBF-ANN gives the lowest prediction errors of the five chemometrics methods. Following the validation of the proposed method, it was applied for the determination of the three reducing sugars in several commercial food samples; and the standard addition method yielded satisfactory recoveries in all instances.  相似文献   

12.
Simultaneous determination of hydrazine (HZ) and thiosemicarbazide (TSC) by partial least squares (PLS) and principle component regression (PCR) was carried out based on kinetic data of novel potentiometry. The rate of chloride ion production in reaction of HZ and TSC with N‐chlorosuccinimide (NCS) was monitored by a chloride ion‐selective electrode. The experimental dada shows not only the good ability of ion‐selective electrodes (ISEs) as detectors for the direct determination of chloride ions but also for simultaneous kinetic‐potentiometric analysis using chemometrics methods. The methods are based on the difference observed in the production rate of chloride ions. The results show that simultaneous determination of HZ and TSC can be performed in their concentration ranges of 0.7‐20.0 and 0.5‐20.0 μg mL?1, respectively. The total relative standard error for applying PLS and PCR methods to 9 synthetic samples in the concentration ranges of 0.8‐10 μg mL?1 of TSC and 1.0‐12.0 μg mL?1 of HZ was 4.62 and 4.98, respectively. The effects of certain foreign ions upon the reaction rate were determined for the assessment of the selectivity of the method. Both methods (PLS and PCR) were validated using a set of synthetic sample mixtures and then applied for simultaneous determination of HZ and TSC in water samples.  相似文献   

13.
Two new methods for the determination of enrofloxacin in commercial formulations and canine urine samples, based on adsorptive stripping voltammetry (AdSV), are proposed. One of the proposed method uses univariate calibration to analyse enrofloxacin in commercial formulations and the other applies principal component regression (PCR) to the voltammetric measurements to determine enrofloxacin in the presence of its metabolite ciprofloxacin. The linear concentration ranges of application were 4-25 and 18-55 ng ml−1 by using an accumulation potential of −0.3 V and a 180 or 60 s accumulation time, respectively for the univariate method. The first concentration range was used for the multivariate method. Both methods were successfully applied to the analysis of commercial formulations and spiked canine urine samples, respectively.  相似文献   

14.
A partial least squares (PLS) regression model based on attenuated total reflectance–Fourier transform infrared spectra of heated olive oil samples has been developed for the determination of polymerized triacylglycerides (PTGs) generated during thermal treatment of oil. Three different approaches for selection of the spectral regions used to build the PLS model were tested and compared: (1) variable selection based on expert knowledge, (2) uninformative variable elimination PLS, and (3) interval PLS. Each of the three variable selection methods provided PLS models from heated olive oil samples with excellent performance for the prediction of PTGs in fried olive oils with comparable model statistics. However, besides a high coefficient of determination (R 2 of 0.991) and low calibration, validation, and prediction errors of 1.14%, 1.21%, and 1.40% w/w, respectively, variable selection based on expert knowledge gave additionally almost identical low calibration (−0.0017% w/w) and prediction (−0.0023% w/w) bias. Furthermore, it was verified that the determination of PTGs was not influenced by the type of foodstuff fried in the olive oil.  相似文献   

15.
A solvent free, fast and environmentally friendly photoacoustic-infrared-based methodology (PAS-FTIR) was developed for the determination of Mancozeb in agrochemicals. This methodology was based on the direct measurement of the transmittance spectra of solid samples and a multivariate calibration model to determine the active ingredient concentration. The proposed partial least squares (PLS) model was made using nine standards prepared by mixing different amounts of kaolin and Mancozeb, with concentrations between 5.43 and 88.10% (w/w).A hierarchical cluster analysis was made in order to classify the samples in terms of similarity in the PAS-FTIR spectra. From their spectra different commercially available fungicide samples were classified in four groups, attending to the presence of other active ingredients co-formulated with Mancozeb. Different PLS models were applied for the analysis of each group of samples.So, for samples containing copper oxychloride (group 1), the information in the spectral range from 1543 to 1474 and 1390 to 1269 cm−1 was employed. For samples co-formulated with Fosetyl-Al (group 2) the range between 3334 and 3211 cm−1, corrected with a single point baseline located at 3055 cm−1, was used. For samples containing Metalaxyl (group 3) it was used the information in the spectral range from 1543 to 1474 cm−1 was used to determine Mancozeb. Finally, the range between 1456 and 1306 cm−1 was used for Mancozeb determination in samples containing Cymoxanil (group 4).The PLS factors used for Mancozeb determination depends on the PLS model employed. 3, 2, 2 and 3 factors were used for Mancozeb determination in commercially available pesticides for groups 1, 2, 3 and 4, respectively. The mean accuracy errors found were 3.1, 2.1, 2.5 and 3.0% for groups 1, 2, 3 and 4, respectively. The developed PAS-FTIR methodology does not consume any solvent, as no sample preparation is necessary it improves the laboratory efficiency without sacrifice the accuracy and avoids the contact of the operator with toxic substances.  相似文献   

16.
The aim of this study was to assess the feasibility of near infrared spectroscopy (NIRS) for analysis of acyclovir in plasma. This methodology was based on the direct measurement of the transmission spectra of liquid samples and a multivariate calibration model (partial least squares, PLS) to determine the acyclovir concentration in plasma sample. The PLS calibration set was built on using the spiked samples by mixing different amounts of acyclovir. Concentration of acyclovir in the plasma samples was calculated employing a 6-factors PLS calibration using the spectral information in the range of 6102-5450 cm− 1. The root mean square errors of prediction (RMSEP) found was 1.21 for acyclovir. The developed PLS-NIRS procedure allows the determination of 120 samples/h does not require any sample pretreatment and avoids waste generation.  相似文献   

17.
A method for predicting octane numbers (RON and MON) in fluid catalytic cracking (FCC) gasolines is proposed. Using FT-MIR and PLS, improvements have been obtained in sample throughput, reduced delay times, accuracy (repeatability and reproducibility), amounts of samples and reagents and environmental working conditions when compared with current standard methods. A total number of 140 daily production samples were taken; and from there, a learning group was prepared (44 samples); a validation set (96 samples) was prepared, as well. Sample spectra were recorded from 4000 to 600 cm-1 at 4 cm-1 intervals (traditional sealed NaCl cells). The PLS technique was used in its two variants (1 and 2-block). Both provided similar results. Their predictive characteristics are very good: SEPRON=0.38; SEPMON=0.40; repeatability <0.1 O.N.; reproducibility <0.3 O.N. (SEP=Standard Error of Prediction).  相似文献   

18.
The univariate and multivariate calibration methods were applied for the simultaneous determination of iodate and periodate in water. The method is based on the reaction of periodate and iodate with pyrogallol red in sulfuric acid media. The reaction was monitored spectrophotometrically by measuring the decrease in absorbance of pyrogallol red at 470 nm. The calibration curve was linear over the concentration ranges of 0.1-12 and 0.1-14 μg ml−1 for iodate and periodate, respectively. The experimental calibration matrix for partial least squares (PLS) and orthogonal signal correction (OSC-PLS) method was designed with 35 mixtures. The results obtained by the PLS and OSC-PLS were statistically compared. The effects of various cations and anions on iodate and periodate determination have been investigated.  相似文献   

19.
Spectrophotometric method has been developed for the direct quantitative determination of captopril in pharmaceuticalpreparation and biological fluids(human plasma and urine)samples.The method was accomplished based on parallel factoranalysis(PARAFAC)and partial least squares(PLS).The study was carried out in the pH range from 2.0 to 12.8 and with aconcentration from 0.70 to 61.50 μg mL~(-1)of captopril.Multivariate calibration models such as PLS at various pH and PARAFACwere elaborated from ultraviolet spectra deconvolution and captopril determination.The best models for this system were obtainedwith PARAFAC and PLS at pH 2.0.The applications of the method for determination of real samples were evaluated by analysis ofcaptopril in pharmaceutical preparations and biological fluids with satisfactory results.The accuracy of the method,evaluatedthrough the RMSEP,was 0.5801 for captopril with best calibration curve by PARAFAC and 0.6168 for captopril with PLS at pH 2.0model.  相似文献   

20.
《Vibrational Spectroscopy》2007,45(2):273-278
A solvent free, fast and environmentally friendly near infrared-based methodology (NIR) was developed for pesticide determination in commercially available formulations. This methodology was based on the direct measurement of the diffuse reflectance spectra of solid samples and a multivariate calibration model (partial least squares, PLS) to determine the active principle concentration in commercial formulations. The PLS calibration set was built on using the spiked samples by mixing different amounts of pesticide standards and powdered samples. Buprofezin, Diuron and Daminozide were used as test analytes. Concentration of Buprofezin in the samples was calculated employing a 4-factors PLS calibration using the spectral information in the range between 2231–2430 and 1657–1784 nm. For Diuron determination a 1-factor PLS calibration model using the spectral range 1110–2497 nm, after a linear removed correction. Daminozide determination was carried out employing a 4-factors PLS model using the spectral information in the ranges 1644–1772 and 2014–2607 nm without baseline correction. The root mean square errors of prediction (RMSEP) found were 1.1, 1.7 and 0.7% (w/w) for Buprofezin, Diuron and Daminozide determination, respectively. The developed PLS-NIR procedure allows the determination of 120 samples/h, does not require any sample pre-treatment and avoids waste generation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号