首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
The determination of calcium and total hardness in natural waters is carried out with a potentiometric sensor array which consists of a series of ion-selective electrodes (ISEs) for Ca2+, Mg2+, NH4+, K+, Na+, Li+, and H+. The selectivity of the calcium and magnesium ISEs is not fully achieved as other cation species may interfere with the analysis. The proposed sensor array device can overcome this drawback since it can take advantage of the cross-selectivities of cation species towards each ISE. In this approach, the multivariate data generated by the sensor array results in a richer source of analytical information which allows the quantification of calcium and total hardness in the water samples by means of chemometric methods. Results obtained are in reasonable concordance with those given by the standard method based on complexometry.  相似文献   

2.
Moneeb MS 《Talanta》2006,70(5):1035-1043
Polarographic chemometric methods were applied to the determination of zinc and nickel in aqueous solutions previously acidified with 0.1 M acetate buffer (pH 4.2). The studied methods are multivariate methods including classical least squares (CLS), principal component regression (PCR) and partial least squares (PLS); derivative ratio methods (first, 1D and second, 2D derivative ratio). A comparative study was considered. The studied chemometric methods do not need the presence of any reduction potential shift reagent in spite of the great overlap between the two metals polarograms. A training set consisting of 10 binary mixture solutions in the possible combinations containing 0.13–9.30 μg/ml Zn(II) and 0.20–12.25 μg/ml Ni(II) was used to develop the chemometric calibrations (CLS, PCR and PLS). A validation set containing the synthetic mixtures in the range of 0.29–9.00 μg/ml for Zn(II) and 0.30–11.60 μg/ml for Ni(II) was used to validate the multivariate calibrations. Same mixtures were used to develop the derivative ratio methods. The polarograms were recorded and their current values were measured within the potential range −920 to −1052 mV at 2 mV intervals. The mean percentage recoveries obtained using CLS, PCR and PLS were found to be 99.5 ± 1.5%, 100.0 ± 1.1% and 100.0 ± 1.0% for Zn(II) and 99.4 ± 1.3%, 99.7 ± 1.2% and 99.9 ± 1.0% for Ni(II), respectively. The mean percentage recoveries obtained using 1D at −950 mV, 1D at −1010 mV, 1D at −950 mV–1D at −1010 mV and 2D at −986 mV for Zn(II) were found to be 99.7 ± 1.2%, 99.2 ± 1.6%, 99.4 ± 1.4% and 99.4 ± 1.4%; and using 1D at −1030 mV and 2D at −1010 mV for Ni(II) were found to be 100.5 ± 1.3% and 100.4 ± 1.3%, respectively. Interferences due to the presence of Cd, Co, Pb, Fe, Mn, Ca, Mg, Cu and Al were studied. The applicability of the proposed methods was assessed through the determination of both metals in tap drinking-water. Samples were subjected if required up to a 20-fold preconcentration step by microwaving in pyrex vessels. The results were compared with those obtained using the zincon and the heptoxime colorimetric reference methods for the determination of zinc and nickel, respectively.  相似文献   

3.
Studies on nitrogen in natural waters have generally focussed on dissolved inorganic nitrogen (DIN), primarily because of relative ease of analysis and the important influence of DIN on water quality. Advances in analytical techniques now permit the systematic study of dissolved organic nitrogen (DON), and this work has shown that DON is quantitatively significant in many waters. This article describes the sampling and analytical protocols required for rapid, precise and reliable determinations of DON, involving high-temperature catalytic oxidation (HTCO), coupled to chemiluminescence detection. This approach simultaneously determines dissolved organic carbon (DOC) and total dissolved nitrogen (TDN), and DON is derived by subtraction of DIN measured by colorimetry. The DON determination is simple to perform, exhibits excellent precision (<1% for C and 1.5% for N) and is applicable to a wide range of natural waters.  相似文献   

4.
A rapid and simple method for the determination of two phthalates and five polycyclic musks in water samples using dispersive liquid-liquid microextraction (DLLME) mated to chemometrics and coupled to GC-MS was developed. Volume of extraction (CCl4) and disperser solvent (MeOH), pH, ionic strength, extraction time, centrifugation time as well as centrifugation speed were optimized in a 27-4 Plackett-Burman design. The obtained significant factors were optimized by using a central composite design (CCD) and the quadratic model between the dependent and the independent variables was built. The optimum experimental conditions of the proposed method were: 250 μL carbon tetrachloride, 0.62 mL methanol, 7.5 min centrifugation time, natural pH containing 0% (w/v) NaCl, while keeping centrifugation speed fixed at 4000 rpm.The calculated calibration curves gave high-level linearity for all target analytes with correlation coefficients ranging between 0.9970 and 0.9992. The repeatability and reproducibility of the proposed method, expressed as relative standard deviation, varied between 2.6% to 9.7% and 5.7% to 12.2%, respectively. The obtained LOD values were in the range of 8-63 ng L−1.  相似文献   

5.
Multivariate self-modeling curve resolution is applied to the quantitation of coeluted organophosphorus pesticides: fenitrothion, azinphos-ethyl, diazinon, fenthion and parathion-ethyl. Analysis of these pesticides at levels of 0.1 to 1 μg/l in the presence of natural interferences is achieved using automated on-line liquid-solid extraction (Prospekt) coupled to liquid chromatography and diode array detection followed by a recently developed multivariate self-modeling curve resolution method. The proposed approach uses only 100 ml of natural water sample and has improved resolution of the coeluted organophosphorus insecticides and their quantitation at trace level. The results have been compared with those obtained by different laboratories participating in the Aquacheck interlaboratory exercise (WRC, Medmenham, UK) where more conventional analytical techniques are being used.  相似文献   

6.
This article discusses the degradation of methyl parathion (MP) in natural and sterilized waters. Experiments were prepared using natural waters gathered in two aquatic systems (Rio de Janeiro State, Brazil), ultra-pure water and humic water solution under different conditions (i.e. in the presence/absence of light, sterilized/no sterilize solutions). The exposition to sunlight was carried out using experimental bottles without headspace immersed in a swimming pool for temperature control. Natural waters results showed that the degradation kinetic of MP is of first order and the half-lives for lake water experiments, under direct sunlight and shade, were 4.41 and 6.89 days, respectively. The kinetic curve for MP degradation in river waters showed that there are no differences when samples were sterilized and placed (or not) under shade conditions, and the half-lives ranged from 5.37 to 2.75 days for sterilized river water/absence of sunlight and natural/presence of sunlight, respectively. Therefore, our results showed that photolysis plays, in addition to bio- and chemical degradation, an important role in the decomposition of MP in aquatic environments.  相似文献   

7.
Identification, resolution and distribution of main microcontaminant sources of endocrine disruptors in Spanish harbours, coastal waters and sediments are investigated using chemometric methods. We investigated eighteen different endocrine disruptor chemical compounds, including non-ionic surfactants, their degradation products and linear alkylbenzene sulfonates, found in a total number of 74 samples (35 water samples and 39 sediment samples) over a period of 16 months from March 1999 to July 2000, and in 32 different geographical sites along the Spanish Mediterranean Coast (e.g. Barcelona, Tarragona, Almeria Harbour, Malaga and the Bay of Cadiz). Main environmental contamination sources of these endocrine disruptor compounds were investigated and interpreted according to their chemical composition and according to their resolved geographical distribution profiles.An erratum to this article can be found at  相似文献   

8.
Aceto Balsamico Tradizionale of Modena (ABTM) is a typical product (PDO denomination) of the province of Modena produced by cooked grape must which undergoes a long ageing period (at least 12 years) in series of wooden casks (batterie). The study of the transformations of this product during ageing is extremely relevant in order to control the authenticity of ABTM towards succedaneous products and mislabelling of age.

This paper presents the results of the investigation of sugars and fixed organic acids in ABTM samples of different ages, coming from different batterie. The analytes were simultaneously determined by a gas chromatographic method optimised for this peculiar matrix.

The method shows good separation and resolution of the investigated chemical species and allows their determination in the concentration ranges reported in brackets: malic (7.6–15.5 g kg−1), tartaric (4.0–9.7 g kg−1), citric (0.6–1.5 g kg−1) and succinic (0.36–0.62 g kg−1) acid and glucose (153–294 g kg−1), fructose (131–279 g kg−1), xylose (011–0.39 g kg−1), ribose (0.078–0.429 g kg−1), rhamnose (0.061–0.195 g kg−1), galactose (0.136–0.388 g kg−1), mannose (0.41–1.46 g kg−1), arabinose (0.33–1.00 g kg−1) and sucrose (0.46–6.84 g kg−1), with mean associated errors ranging from 5 to 19% depending on the analytes.

Moreover, the recovery values are always satisfactory, being close to one for most of the analytes.

Furthermore, in order to assess the degree of variability of the different analytes content with vinegar ageing and the similarity/dissimilarity among series of casks a three-way data analysis method (Tucker3) is proposed. The chemometric technique applied on the data set shows differences between the samples on the bases of their different ageing period, and between the batterie, which traditionally have an own peculiar production procedure.  相似文献   


9.
Páscoa RN  Tóth IV  Rangel AO 《Talanta》2011,84(5):1267-1272
This work exploits a multi-syringe injection analysis (MSFIA) system coupled with a long liquid waveguide capillary cell for the spectrophotometric determination of zinc and copper in waters. A liquid waveguide capillary cell (1.0 m pathlength, 550 μm i.d. and 250 μL internal volume) was used to enhance the sensitivity of the detection. The determination for both ions is based on a colorimetric reaction with zincon at different pH values. The developed methodology compares favourably with other previously described procedures, as it allows to reach low detection limits for both cations (LODs of 0.1 and 2 μg L−1, for copper and zinc, respectively), without the need for any pre-concentration step. The system also provided a linear response up to 100 μg L−1 with a high throughput (43 h−1) and low reagent consumption and effluent production. The developed work was applied to natural waters and three certified reference water samples.  相似文献   

10.
Trace metals play an important role in the regulation of primary productivity and phytoplankton community composition. Metal species directly affects the biogeochemical cycling processes, transport, fate, bioavailability and toxicity of trace metals. Therefore, developing powerful methods for metal speciation analysis is very useful for research in a range of fields, including chemical and environmental analysis. Voltammetric methods, such as anodic stripping voltammetry (ASV) and competing ligand exchange-adsorptive cathodic stripping voltammetry (CLE-AdCSV), have been widely adopted for speciation analysis of metals in different natural aquatic systems. This paper provides an overview of the theory of voltammetric methods and their application for metal speciation analysis in natural waters, with a particular focus on current voltammetric methods for the discrimination of labile/inert fractions, redox species and covalently bound species. Speciation analysis of typical trace metals in natural waters including Fe, Cu, Zn, Cd, and Pb are presented and discussed in detail, with future perspectives for metal speciation analysis using voltammetric methods also discussed. This review can elaborate the particular knowledge of theory, merits, application and future challenge of voltammetric methods for speciation analysis of trace metals in natural waters.  相似文献   

11.
A chelating poly(dithiocarbamate) resin with macroreticular support is shown to be effective for the preconcentration of copper, iron and zinc in natural waters. The retained ions can be eluted efficiently in 5 ml of 8M nitric acid from 1–20-cm columns of resin.This poly(dithiocarbamate) resin is used for the preconcentration and determination of copper, iron and zinc by flame atomic absorption spectrophoto-metry. Common ions present in natural waters do not interfere. The detection limits were 0.50, 0.21 and 0.04 g 1–1 for Cu, Fe and Zn respectively.  相似文献   

12.
This paper reports the multivariate optimization of a liquid–liquid extraction procedure for the determination of 15 EPA-polycyclic aromatic hydrocarbons (PAHs) by high-performance liquid chromatography with fluorescence detection. A Doehlert design was used to find optimum conditions for the procedure through Response Surface Methodology. Three variables (total volume of hexane, number of extraction steps and duration of such steps) were elected as factors in the optimization study. A principal component analysis (PCA) was run with optimized data, resulting in four groups of PAHs, ordered according to their molecular weight. Final working conditions were established in order to achieve a more robust methodology in relation to all fifteen PAHs under study. Best results could be observed when 77 mL of hexane were divided in four consecutive extraction steps with 18 min each. These experimental conditions were applied in the analysis of a spiked river water sample, and the recoveries varied between 80.9 and 106%, with an average value of 97.1 ± 6.8%. The application of the methodology to river water showed that the method has a good average precision for the studied PAHs.  相似文献   

13.
An investigation on filtration procedures and SPE sorbents used for the determination of traces of the most common veterinary fluoroquinolones (FQs), marbofloxacin (MAR) and enrofloxacin (ENR) used as antibacterial agents in cattle and swine farms in the province of Pavia (Italy), was performed in natural waters. The filter composition and the sorbent used in the SPE strongly influence the correct recovery, both in terms of total and dissolved FQs concentration. An accurate comparison among different filters and SPE sorbents showed that a full determination of analytes was possible on nylon filters followed by anionic (WAX) and hydrophilic–lipophilic balance (HLB) resins as SPE. Quantitative analysis was done by chromatography with fluorescence detection (HPLC‐FD). Fluoroquinolones recovery was between 90 and 116% with RSD not greater than 10% (sample volume 250 mL). The developed method allowed to determine both dissolved and NOM‐absorbed fractions of FQs, therefore a full determination of the analytes was possible. Limits of detection (LOD) and quantification (LOQ) were, respectively, 0.7 and 2.2 ng/L for ENR and 2 and 6 ng/L for MAR. The kinetics of degradation under solar light was explored.  相似文献   

14.
Phosphorus is an important macronutrient and the accurate determination of phosphorus species in environmental matrices such as natural waters and soils is essential for understanding the biogeochemical cycling of the element, studying its role in ecosystem health and monitoring compliance with legislation. This paper provides a critical review of sample collection, storage and treatment procedures for the determination of phosphorus species in environmental matrices. Issues such as phosphorus speciation, the molybdenum blue method, digestion procedures for organic phosphorus species, choice of model compounds for analytical studies, quality assurance and the availability of environmental CRMs for phosphate are also discussed in detail.  相似文献   

15.
A method for the simultaneous spectrophotometric determination of calcium and magnesium in mineral waters with an FIA system is tested. The method is based on the reaction between the analytes and arsenazo(III) at pH 8.5. The calculations of the amounts of both analytes in the samples are carried out with the H-point standard addition method (HPSAM) for ternary mixtures, and with a partial least squares (PLS) model after a proper variable selection. The results obtained for the determination of calcium were comparable using both methods. The employment of the HPSAM brings to our attention the influence of the calcium concentration in the sample to the development of the reaction between magnesium and arsenazo(III). HPSAM also permits to estimate the concentration of magnesium in the samples.  相似文献   

16.
Size exclusion chromatography was used in order to characterize organically bound aluminium in natural water samples. A Superose column was used, with 0.1 M acetate buffer (pH 4.6) as mobile phase. Three detection systems were used; graphite furnace atomic absorption spectrometry, post-column reaction with pyrocatechol violet and UV spectrometry at 254 nm. A single peak was obtained for organic aluminium in natural waters. The results indicated that aluminium binds with a broad size range of humic substances, and that the inorganic aluminium was present in polymeric form.  相似文献   

17.
Inorganic mercury and methylmercury are determined in natural waters by injecting the filtered samples onto a low cost commercial flow injection system in which an anion exchange microcolumn is inserted after the injection loop (FIA-IE). If hydrochloric acid is used as the carrier solution, the HgCl4(2-) species (inorganic mercury) will be retained by the anion exchanger while the CH3HgCI species (methylmercury) will flow through the resin with negligible retention. Four anion exchangers and seven elution agents were checked, in a batch mode, to search for the best conditions for optimal separation and elution of both species. Dowex M-41 and L-cysteine were finally selected. Mercury detection was performed by cold vapour-electrothermal atomic adsorption spectrometry (HG-ETAAS). Both systems were coupled to perform the continuous on-line separation/detection of both inorganic mercury and methylmercury species. Separation and detection conditions were optimized by two chemometric approaches: full factorial design and central composite design. A limit of detection of 0.4 microg L(-1) was obtained for both mercury species (RSD < 3.0% for 20 microg L(-1) inorganic and methylmercury solutions). The method was applied to mercury speciation in natural waters of the Nerbioi-lbaizabal estuary (Bilbao, North of Spain) and recoveries of more than 95% were obtained.  相似文献   

18.
The aim of this paper is to introduce a virtual special issue that reviews the development of analytical approaches to the determination of phosphorus species in natural waters. The focus is on sampling and sample treatment, analytical methods and quality assurance of the data. The export of phosphorus from anthropogenic activities (from diffuse and point sources) can result in increased primary production and eutrophication, and potentially the seasonal development of toxic algal blooms, which can significantly impact on water quality. Therefore the quantification of phosphorus species in natural waters provides important baseline data for studying aquatic phosphorus biogeochemistry, assessing ecosystem health and monitoring compliance with legislation.  相似文献   

19.
Monobutyltin (MBT), dibutyltin (DBT) and tributyltin (TBT) were determined in natural water samples by aqueous phase ethylation with sodium tetraethylborate (STEB), room temperature trapping of the resulting volatile derivatives on Tenax TA®, followed by gas chromatography-quartz furnace atomic absorption spectrometry (GC-QFAAS). Recoveries of butyltin spikes from natural water samples were 90-109% at concentrations of ∼100 ng Sn/l. The method precision at ∼100 ng Sn/l was ≤6% RSD for butyltins spiked into natural waters. The detection limits for 1 l water samples were <1 ng Sn/l for all butyltin species. Sample throughput of the method is high (greater than three samples per hour) due to the two-stage nature of the procedure, which allows derivatisation/trapping and GC-QFAAS quantitation to be performed separately. Off-line trapping is also advantageous as it extends the life of the GC column and quartz furnace to at least 12 months due to minimisation of carry-over of co-purged material.  相似文献   

20.
A simple and sensitive multicommutated flow procedure, implemented by employing a homemade light emitting diode (LED) based photometer, has been developed for the determination of chromium (VI) and total chromium in water. The flow system comprised a set of four solenoid micro-pumps, which were assembled to work as fluid propelling and as commutating devices. The core of the detection unit comprised a green LED source, a photodiode and a homemade flow cell of 100 mm length and 2 mm inner diameter. The photometric procedure for the speciation of chromium in natural waters was based on the reaction of Cr (VI) with 1,5-diphenylcarbazide. Cr (III) was previously oxidized to Cr (VI) and determined as the difference between total Cr and Cr (VI). After carrying out the assays to select the best operational conditions the features of the method included: a linear response ranging from 10 to 200 μg l−1 Cr (III) and Cr (VI) (r = 0.999, n = 7); limits of detection of 2.05 and 1.0 μg l−1 for Cr (III) and Cr (VI), respectively; a relative standard deviation lower than 2.0% (n = 20) for a typical solution containing 50 μg l−1 Cr; a sampling throughput of 67 and 105 determinations per hour for total Cr and Cr (VI), respectively, and recovery values within the range of 93-108% for spiked concentrations of the order of 50 μg l−1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号