首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An operationally defined fractionation protocol was developed to study the partitioning of Ca, Mg, Fe and Zn in UHT cow milks. The method was based on sorption of distinct metal species by two ion exchange columns, namely strong cation exchanger Dowex 50Wx4 and strong anion exchanger Dowex 1x4, connected in a series. The evaluation of the donation of metal species classes distinguished, that is cationic and anionic fractions, was made after splitting the columns and elution of metal groupings with a 2.0 mol l−1 HCl solution, followed by the determination of metal concentrations in the resulting eluates. The amount of third, inert fraction was assessed by measuring metal contents in the effluents obtained after passage of the samples through the columns. The results achieved utilizing two-column ion exchange based procedure were compared with those obtained for the approach in which the columns were considered separately. The fractionation pattern for each metal studied was thoroughly discussed in light of available knowledge relating to the composition of milk.  相似文献   

2.
Pawel Pohl 《Mikrochimica acta》2007,159(3-4):325-332
A straightforward method is presented for the operational fractionation of Mn and Zn in beer based on use of a tandem ion exchange column assemblage. Degassed beer samples were driven through the system comprising the weak anion exchanger Reillex 402 (first column) connected in a series with the strong cation exchanger Dowex 50Wx4 (second column). The relevant metal groupings retained on the exchangers, i.e., the fraction of the metals bound to the polyphenols, and the fraction of the cationic metal species, were determined respectively in the effluents (5-mL portions) sampled during the passage of the samples through the first column, and in the eluates obtained by the elution of Mn and Zn species (with 10 mL of 4.0 mol L−1 HCl) from the second column, after passing the samples through the tandem column system. Additionally, the effluents obtained after loading the tandem column system with the samples were also collected and taken to the analysis in order to asses the donation of the third, residual fraction. The usefulness of the fractionation scheme is illustrated by the analysis of three bottled beers produced by a local brewery. The fractionation patterns established for Mn and Zn are discussed regarding the possible associations of the metals under consideration with different endogenous beer ligands.  相似文献   

3.
Amberlite XAD-4 resin has been functionalized with succinic acid by coupling it with dibromosuccinic acid after acetylation. The resulting resin has been characterized by FT-IR, elemental analysis and TGA and has been used for preconcentrative separation of uranium(VI) from host of other inorganic species prior to its determination by spectrophotometry. The optimum pH value for quantitative sorption of uranium(VI) in both batch and column modes is 4.5-8.0 and desorption can be achieved by using 5.0 ml of 1.0 mol l−1 HCl. The sorption capacity of functionalized resin is 12.3 mg g−1. Calibration graphs were rectilinear over the uranium(VI) concentrations in the range 5-200 μg l−1. Five replicate determinations of 50 μg of uranium(VI) present in 1000 ml of solution gave a mean absorbance of 0.10 with a relative standard deviation of 2.56%. The detection limit corresponding to three times the standard deviation of the blank was found to be 2 μg l−1. Various cationic and anionic species at 200-fold amounts do not interfere during the preconcentration of 5.0 μg of uranium(VI) present in 1000 ml (batch) or 100 ml (column) of sample solution. Further, adsorption kinetic and isotherm studies were also carried out by a batch method to understand the nature of sorption of uranium(VI) with the succinic acid functionalized resin. The accuracy of the developed solid phase extractive preconcentration method in conjunction with Arsenazo III procedure was tested by analyzing marine sediment (MESS-3) and soil (IAEA soil-7) reference material. Further, the above procedure has been successfully employed for the analysis of soil and sediment samples.  相似文献   

4.
Gopalan Venkatesh 《Talanta》2007,71(1):282-287
Amberlite XAD-16 was loaded with 4-{[(2-hydroxyphenyl)imino]methyl}-1,2-benzenediol (HIMB) via azo linker and the resulting resin AXAD-16-HIMB explored for enrichment of Zn(II), Mn(II), Ni(II), Pb(II), Cd(II), Cu(II), Fe(III) and Co(II) in the pH range 5.0-8.0. The sorption capacity was found between 56 and 415 μmol g−1 and the preconcentration factors from 150 to 300. Tolerance limits for foreign species are reported. The kinetics of sorption is not slow, as t1/2 is ≤15 min. The chelating resin can be reused for seventy cycles of sorption-desorption without any significant change (<2.0%) in the sorption capacity. The limit of detection values (blank + 3 s) are 1.72, 1.30, 2.56, 2.10, 0.44, 2.93, 2.45 and 3.23 μg l−1 for Zn, Mn, Ni, Pb, Cd, Cu, Fe and Co, respectively. The enrichment on AXAD-16-HIMB coupled with flame atomic absorption spectrometry (FAAS) monitoring is used to determine the metal ion ions in river and synthetic water samples, Co in vitamin tablets and Zn in powdered milk samples.  相似文献   

5.
Hashemi P  Bagheri S  Fat'hi MR 《Talanta》2005,68(1):72-78
An agarose-based anion exchanger (Q-Sepharose) was loaded with chromotropic acid (CTA) and used for column preconcentration and determination of copper by flame AAS. Preliminary experiments indicated that a sample pH of 5.7-6.5 is best suited for accumulation of copper and a 2.5 ml portion of a 0.02 mol l−1 HCl solution can efficiently desorb the analyte from the column. An incomplete factorial design was used for optimization of five different variables that affect recovery of copper. The results indicated that ionic strength, pH and sample volume variables are the most important effects, respectively. Hence, these variables and their possible interactions were studied more carefully. In optimized conditions, the column could tolerate up to 0.18 mol l−1 sodium nitrate in the matrix. A 5 ml portion of a 0.02 mol l−1 CTA was sufficient for loading of a 0.5 ml column prior to preconcentration of copper from a 150 ml sample solution. Matrix ions of Ca2+, Mg2+, Na+ and K+ and potentially interfering ions of Pb2+, Ni2+, Cd2+, Co2+, Zn2+ and Mn2+ with relatively high concentrations did not have any significant effect on the recovery of the analyte. A preconcentration factor of 60 and a detection limit of 1.0 μg l−1 was obtained for the determination of copper by the flame AAS method. A precision better than 2.5%, expressed as R.S.D., was also achieved. Application of the method to tap water and two different river water samples resulted in values well confirmed by direct determinations with ET-AAS.  相似文献   

6.
P. Pohl  B. Prusisz 《Talanta》2007,71(1):411-418
A simple and versatile protocol, based on use of solid phase extraction on strong ion exchangers and off-line detection by flame atomic absorption spectrometry, was devised to fractionate iron and zinc in common dietary food and beverages products, i.e., bee honeys, fruit juices and tea infusions. In the procedure proposed, cation exchanger Dowex 50Wx4 and anion exchanger Dowex 1x4 were used separately for distinguishing broadly meant the cationic metal fraction and the fraction of stable anionic metal complexes, respectively, after retention of metal species and their exhaustive elution by means of a 4.0 mol l−1 HCl solution. The third fraction, referred to the residual metal species, was retrieved by difference between total soluble metal contents and sum of metal quantities in separated cationic and anionic fractions. The fractionation pattern observed for both metals was described and discussed.  相似文献   

7.
A chitosan resin derivatized with N-methyl-d-glucamine (CCTS-NMDG) was synthesized by using a cross-linked chitosan (CCTS) as base material. The N-methyl-d-glucamine (NMDG) moiety was attached to the amino group of CCTS through the arm of chloromethyloxirane. The adsorption behavior of 59 elements on the synthesized resin was systematically examined by using the resin packed in a mini-column, passing water samples through it and measuring the adsorbed elements in eluates by ICP-MS. The CCTS-NMDG resin shows high ability in boron sorption with the capacity of 0.61 mmol ml−1 (= 2.1 mmol g−1). The sorption kinetics of this resin was faster than that of the commercially available resins. Other advantages of the synthesized resin are: (1) quantitative collection of boron at neutral pH regions; (2) complete removal of large amounts of matrices; (3) no loss of efficiency over prolonged usage; (4) effective collection of boron in wide range concentration using a mini column containing 1 ml resin; (5) complete elution of boron with 1 mol l−1 nitric acid. The resin was applied to the collection/concentration of boron in water samples. Boron in tap water and river water was found to be in the range of 6-8 μg l−1. The limit of detection (LOD) of boron after pretreatment with CCTS-NMDG resin and measurement by ICP-MS was 0.07 μg l−1 and the limit of quantification (LOQ) was 0.14 μg l−1 when the volume of each sample and eluent was 10 ml.  相似文献   

8.
A flow injection analysis (FIA) method using on-line separation and preconcentration with a novel metal scavenger beads, QuadraSil™ TA, has been developed for the ICP-OES determination of traces of palladium. QuadraSil TA contains diethylenetriamine as a functional group on spherical silica beads and shows the highest selectivity for Pd(II) at pH 1 (0.1 mol l−1 hydrochloric acid) solution. An aliquot of the sample solution prepared as 0.1 mol l−1 in hydrochloric acid was passed through the QuadraSil TA column. After washing the column with the carrier solution, the Pd(II) retained on the column was eluted with 0.05 mol l−1 thiourea solution and the eluate was directly introduced into an ICP-OES. The proposed method was successfully applied to the determination of traces of palladium in JSd-2 stream sediment certified reference material [0.019 ± 0.001 μg g−1 (n = 3); provisional value: 0.0212 μg g−1] and SRM 2556 used auto catalyst certified reference material [315 ± 4 μg g−1 (n = 4); certified value: 326 μg g−1]. The detection limit (3σ) of 0.28 ng ml−1 was obtained for 5 ml of sample solution. The sample throughputs for 5 ml and 100 μl of the sample solutions were 10 and 15 h−1, respectively.  相似文献   

9.
This study describes the functionalization of biopolymer chitosan, using the complexing agent 8-hydroxyquinoline (oxine) by reaction of diazotization. The chelating resin was characterized by degree of deacetylation, infrared, Raman spectroscopy. The efficiency of the chelating resin and accuracy of the proposed method was evaluated by the metal ion recovery technique in the analysis of potable water, lake water, seawater and a certified sample of oyster tissue. The metal ions Cd(II) and Cu(II) in the samples were previously enriched in a minicolumn and flow injection flame atomic absorption spectrometry (FI-FAAS) determined the concentrations of the analytes. The chelating resin exhibited high selectivity for Cd(II) at pH 7 and for Cu(II) at pH 10. The eluent concentration was tested by the use of HNO3 in concentrations of 0.1-3 mol l−1 maximum response was obtained at 0.5 mol l−1 for Cd(II) and Cu(II), with R.S.D. values of 0.4%. The analytes gave relative standard deviations (R.S.D.) of 1.5 and 0.7% for solutions of Cd(II) and Cu(II), respectively (n = 7) containing 20 μg l−1 of the metal ions, defining a high reproducibility. The limits of detection (LOD) were 0.1 μg l−1 for Cd(II) and 0.4 μg l−1 for Cu(II). The analytical properties of merit were obtained using the parameters previously optimized with preconcentration time of 90 s. The chelating resin showed chemical stability within a wide range of pH and the efficiency was not altered for the preconcentration of the metal ions during all the experiments.  相似文献   

10.
A series of experiments were undertaken to investigate the effect of ionic strength and the concentration of free sodium ions in the resin gel on the performance of the diffusive gradients in thin films (DGT) technique. When the free sodium ion concentration in the resin gel was estimated by the time-dependent release into solution, it agreed with a previous estimate. However, equilibration with different volumes of water gave a higher value, suggesting that inherent averaging in the time-dependent release method underestimates the free concentration. DGT measurements of Cu and Cd were made over a wide range of ionic strengths (from 3 μmol l−1 to 0.8 mol l−1). For all the ionic strengths above 100 μmol l−1 there was no significant difference between measurements made by DGT and measurements made directly on the solution using atomic absorption spectroscopy. Below 100 μmol l−1 results were erratic. They did not comply with a theory that predicts high results for DGT based on enhancement of the diffusion coefficient of trace metal cations by counter diffusion of sodium ions. When Cd in solutions with a range of ionic strengths was measured by DGT there was no difference whether the resin gels were in Na or Ca form. Rather than counter diffusion of Na ions, it is suggested that the spurious behaviour at low ionic strength is due to interactions of the trace metals with the diffusion gel when there are insufficient excess cations present.  相似文献   

11.
Di J  Zhang F 《Talanta》2003,60(1):31-36
This paper described the determination of trace manganese using linear sweep voltammetry at a pretreatment glassy carbon electrode. The glassy carbon electrode pretreated by electrochemical method in the 0.1 mol l−1 NaOH solution greatly improved the electrode responsibility in the determination of manganese(II). The barrier to the detection of low manganese concentration was overcome by means of autocatalytic effect of manganese oxide deposited on the electrode in advance. Under the optimum experiments condition (0.04 mol l−1 NH3-NH4Cl buffer solution, pH 9.0), the linear range was 4×10−8 to 1×l0−6 mol l−1 Mn(II) for linear sweep voltammetry and 1×10−9 to 4×10−8 mol l−1 Mn(II) for convolution voltammetry. The relative standard deviation for 2×10−8 mol l−1 Mn(II) is 3.4%. The proposed method is simple, rapid, sensitive and selective. It had been applied to the determination of trace manganese in samples with satisfactory results.  相似文献   

12.
Neurodegenerative diseases like Alzheimer's disease and Parkinson's disease are gaining increasing relevance in our aging society. However, the complex multifactorial mechanisms of these diseases are not sufficiently understood yet. Several studies indicate that metal ions play an important role in the promotion of these diseases. Consequently, the transport pathways of metals and their species to the brain are of special interest. Following oral or inhalative uptake metals are absorbed and distributed via the blood stream in the body. Transport into the brain requires crossing of the neural barriers.Our study focuses on the investigation of the permeability of the blood-cerebrospinal fluid (CSF)-barrier for selected metals (Mn, Fe, Cu, Zn, Mg and Ca). For the first time paired human serum and CSF samples obtained from a neurological department were characterised for total metal concentrations and metal species. For CSF few data are available in the literature on total metal contents and applications of element speciation analysis in CSF samples are rare. In our study mean CSF/serum ratios (n = 29) were 0.7 for Mn, 0.02 for Fe, 0.02 for Cu, 0.03 for Zn, 1.3 for Mg and 0.5 for Ca. Size exclusion chromatography (SEC) online with inductively coupled plasma mass spectrometry was further developed for the size characterisation of the metal species in CSF and serum with limits of detection of 0.4 μg L−1 for Fe, 0.01 μg L−1 for Mn, 0.2 μg L−1 for Cu, 0.2 μg L−1 for Zn, 0.6 μg L−1 for Mg and 3.8 μg L−1 for Ca in the eluate from the HPLC column. Apart from Mn the application of this technique has not been published for metal speciation in CSF, yet. In the case of some Mn species it turned out that methanol, which was contained in the mobile phase of a SEC method previously published from our group on qualitative characterisation of Mn species, was interfering with the quantification. The modified method developed in this work (with NaCl but without methanol in the mobile phase; use of internal standard) allowed reliable quantification. The results clearly indicate changes in the metal species pattern due to different permeation behaviour at the blood-CSF-barrier. As part of the method validation the relative stability of complexes of albumin, transferrin and citrate with Mn, Fe, Cu and Zn was investigated.  相似文献   

13.
This work assesses for the first time the potential of natural Kaolinite as adsorptive material for preconcentration of metal traces. Manganese is quantitatively retained by 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol (5-Br-PADAP) on thermal modified Kaolinite by column method in pH range of 8.5-10.0 at flow rate of 2 ml min−1. Manganese was removed from column with 5.0 ml of H2SO4 4 mol l−1 and determined by flame atomic absorption spectrometric at 279.5 nm. In this case, 0.l μg of manganese can be concentrated from 800 ml of aqueous sample (where concentration is as low as 0.125 μg l−1). Detection limit is 4.3 μg l−1 (3 δbl m−1) and analytical curve is linear in the 0.02-10 mg l−1 in final solution with correlation coefficient 0.9997 and relative standard deviation for eight replicate determination of 5 μg of manganese in final solution is 0.71%. The interference of a large number of anions and cations has been studied in detail to optimize the conditions and method was successfully applied for determination of manganese in complex materials.  相似文献   

14.
5,11,17,23-Tetrakis(1,1-dimethylethyl)-25,26-dihydroxy-27,28-crown-4-calix[4]arene in the cone conformation was synthesized. This p-tert-butylcalix[4]arene-1,2-crown-4 compound was then anchored with Merrifield chloromethylated resin beads. The modified polymeric resin was characterized by 1H NMR, FT-IR and elemental analysis and used successfully for the separation and preconcentration of Cu(II), Cd(II), Co(II), Ni(II) and Zn(II) prior to their determination by FAAS. Effective extraction conditions were optimized in both batch and column methods. The resin exhibits good separating ability with maximum between pH 6.0-7.0 for Cu(II), pH 6.0 for Cd(II), pH 5.0 for Co(II), pH 4.0-4.5 for Ni(II), and pH 4.5 for Zn(II). The elution studies were carried out with 0.5 mol L−1 HCl for Cu(II), Co(II) and Co(II), 1.0 mol L−1 HCl for Cd(II) and Zn(II). The sorption capacity, preconcentration factor and distribution coefficient of each metal ion were determined. The detection limits were 1.10, 1.25, 1.83, 1.68 and 2.01 μg L−1 for Cu(II), Cd(II), Co(II), Ni(II) and Zn(II). The influence of several ions on the resin performance was also investigated. The validity of the proposed method was checked for these metal ions in NIST standard reference material 2709 (San Joaquin Soil) and 2711 (Montana Soil).  相似文献   

15.
A fully automated flow-through microcolumn fractionation system with on-line post-extraction derivatization is proposed for monitoring of orthophosphate in solid samples of environmental relevance. The system integrates dynamic sequential extraction using 1.0 mol l−1 NH4Cl, 0.1 mol l−1 NaOH and 0.5 mol l−1 HCl as extractants according to the Hieltjes-Lijklema (HL) scheme for fractionation of phosphorus associated with different geological phases, and on-line processing of the extracts via the Molybdenum Blue (MB) reaction by exploiting multisyringe flow injection as the interface between the solid containing microcolumn and the flow-through detector. The proposed flow assembly, capitalizing on the features of the multicommutation concept, implies several advantages as compared to fractionation analysis in the batch mode in terms of saving of extractants and MB reagents, shortening of the operational times from days to hours, highly temporal resolution of the leaching process and the capability for immediate decision for stopping or proceeding with the ongoing extraction. Very importantly, accurate determination of the various orthophosphate pools is ensured by minimization of the hydrolysis of extracted organic phosphorus and condensed inorganic phosphates within the time frame of the assay. The potential of the novel system for accommodation of the harmonized protocol from the Standards, Measurement and Testing (SMT) Program of the Commission of the European Communities for inorganic phosphorus fractionation was also addressed. Under the optimized conditions, the lowest detectable concentration at the 3σ level was ≤0.02 mg P l−1 for both the HL and SMT schemes regardless of the extracting media. The repeatability of the MB assay was better than 2.5% and the dynamic linear range extended up to 7.0 mg P l−1 in NH4Cl and NaOH media and 15 mg P l−1 whenever HCl is utilized as extractant for both the HL and SMT protocols.  相似文献   

16.
In this paper, a novel electrochemiluminescence (ECL) imaging sensor array was developed for determination of hydrogen peroxide (H2O2), which was based on Cu/Zn alloy galvanic cell generated ECL. In alkaline solution, Cu/Zn galvanic cell was formed because of corrosion effect, the galvanic cell could supply stable potential for ECL generation of luminol, and the weak ECL emission could be enhanced by H2O2. The galvanic cell sensor array was designed by putting Cu/Zn alloy in 96-well microtiter plates separately. The relative ECL intensity was proportional with the concentration of hydrogen peroxide in the range of 1.0 × 10−6 to 1.0 × 10−4 mol l−1 and the detection limit was 3.0 × 10−7 mol l−1 (3σ), the relative standard deviation (R.S.D.) for 11 parallel measurements of 1.0 × 10−5 mol l−1 H2O2 was 4.0%.  相似文献   

17.
Mrak T  Slejkovec Z  Jeran Z 《Talanta》2006,69(1):251-258
Different extraction procedures were applied to improve the extraction efficiency of arsenic compounds from lichens. Two lichen species were chosen from an arsenic-contaminated environment: epiphytic Hypogymnia physodes (L.) Nyl. and terricolous Cladonia rei Schaer. Samples were extracted with water at temperatures of 20, 60 and 90 °C, using mixtures of methanol/water (9:1, 1:1 and 1:9), Tris buffer and acetone and the extracts speciated. Water and Tris buffer showed the best extraction efficiency of all extractants used; however, the extraction efficiency was still less than 23%. Since a major fraction of arsenic appeared to be associated with trapped soil particles, a sequential extraction procedure originally designed for soils (extraction steps: (1) 0.05 mol l−1 (NH4)2SO4; (2) 0.05 mol l−1 (NH)4H2PO4; (3) 0.2 mol l−1 NH4-oxalate buffer, pH 3.25; (4) mixture of 0.2 mol l−1 NH4-oxalate buffer and 0.1 mol l−1 ascorbic acid, pH 3.25; (5) 0.5 mol l−1 KOH) was applied and found to remove 45% of the total arsenic from H. physodes and 83% from C. rei. The lipid-soluble fraction of arsenic was estimated by k0-INAA analysis of diethylether extracts and was found to be negligible. An HPLC-UV-HGAFS system was used to determine the arsenic compounds extracted. In both lichen species, arsenous acid, arsenic acid, monomethylarsonic acid, dimethylarsinic acid, arsenobetaine, trimethylarsine oxide and glycerol-ribose were detected. In addition, phosphate-ribose was found in H. physodes.  相似文献   

18.
The use of selective pre-concentration and differential pulse anodic stripping voltammetry (DPASV) using a carbon paste electrode modified (CPEM) with spinel-type manganese oxide has been proposed for the determination of lithium ions content in natural waters. The new procedure is based on the effective pre-concentration of lithium ions on the electrode surface containing spinel-type Mn(IV) oxide with the reduction of Mn(IV) to Mn(III) and consequently the lithium ions intercalation (insertion) into the spinel structure. The best DPASV response was reached for an electrode composition of 25% (m/m) spinel-type MnO2 in the paste, 0.1 mol l−1 tris(hydroxymethyl)aminomethane (TRIS) buffer solution of pH 8.3, scan rate of 5 mV s−1, accumulation potential of 0.3 V versus saturated calomel reference electrode (SCE), pre-concentration time of 30 s and potential pulse amplitude of 50 mV. In these experimental conditions, the proposed methodology responds to lithium ions in the concentration range of 2.8×10−6 to 2.0×10−3 mol l−1 with a detection limit of 5.6×10−7 mol l−1. The determination of the lithium ions content in different samples of natural waters samples using the proposed methodology and atomic absorption spectrophotometry are in agreement at the 95% confidence level and within an acceptable range of error.  相似文献   

19.
Hashemi P  Boroumand J  Fat'hi MR 《Talanta》2004,64(3):578-583
Three different agarose-based chelating adsorbents with, respectively, iminodiacetic acid (IDA), tris(2-aminoethyl)amine (TREN) and dipicolylamine (DPA) functional groups and an agarose-based anion exchanger (Q-Sepharose), were studied for the separation and preconcentration of Cr(III) and Cr(VI) species in water. Column recoveries of all the adsorbents were plotted against pH, and it was found that at pH 3.0 the IDA adsorbent selectively adsorbs Cr(III), with a 100 ± 1.0% recovery. The Q-Sepharose, on the other hand, accumulated only Cr(VI) at this pH, again with a recovery of 100 ± 1.0%. A dual column system was accordingly designed, using the two adsorbents in tandem, for the separation and preconcentration of the chromium species.The effects of pH, sample flow rate, column length, eluent type, eluent volume, acid concentration and interfering ions on the recoveries of Cr(III) and Cr(VI) were carefully studied. It was shown that by passing test solutions, at pH 3.0; through the dual column system, the two chromium species could be individually collected on the columns, respectively, and eluted, one after the other. A portion of 2 mol l−1 hydrochloric acid was used for elution of each column before final measurement by flame AAS method. A preconcentration factor of 12, a detection limit of 7.7 ± 0.1 μg l−1 and a precision expressed as relative standard deviation of 0.4% (at 0.3 mg l−1) were achieved for six replicates.Application of the developed method to the determination of chromium species in spiked river and tap water and wastewater samples, from a dye production plant, resulted in excellent agreements with accepted concentrations.  相似文献   

20.
The variety of extraction procedures used in environmental studies makes it very difficult to compare the results obtained; therefore, harmonisation and standardisation is required. The extraction of heavy metals from soil by un-buffered salt solutions is a method used to estimate soil contamination and trace metal availability to plants. The present study assesses three of these methods. All the three methods are standardised or is undergoing standardisation in Europe: 0.01 mol l−1 CaCl2 (The Netherlands), 0.1 mol l−1 NaNO3 (Switzerland) and 1 mol l−1 NH4NO3 (Germany). The soil-reference material BCR CRM 483, with indicative values for CaCl2, NaNO3, NH4NO3 extractable metals, was analysed for quality control purposes. The three methods were also applied to 10 contaminated soils and the extracted metals (Cd, Cu, Pb, and Zn) were determined. The procedures were found to be precise (typically <10%) for all metals, taking into account the low metal concentrations extracted. The metal extraction efficiency obtained with each procedure was slightly different, and the three methods provided equivalent information while predicting the relative trace-metal mobility (Cd>Zn>Cu>Pb) in the soils studied. From the experience obtained, the 0.01 mol l−1 CaCl2 extraction procedure seems to be the most suitable method for performing a harmonisation process, since this procedure combines an appropriate extraction capacity for this type of studies with the lowest salt concentration in the extracts and, consequently, with a more simple matrix for metal determination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号