首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mierzwa J  Sun YC  Chung YT  Yang MH 《Talanta》1998,47(5):35-1270
The comparative determination of barium, copper, iron, lead and zinc in tea leaf samples by two atomic spectrometric techniques is reported. At first, slurry sampling electrothermal atomization atomic absorption spectrometry (ETAAS) was applied. The results of Ba and Pb determination were calculated using the method of standard additions, and results of Cu, Fe and Zn from the calibration graphs based on aqueous standards. These results were compared with the results obtained after microwave-assisted wet (nitric+hydrochloric+hydrofluoric acids) digestion in closed vessels followed by inductively coupled plasma-atomic emission spectrometric (ICP-AES) determination with the calibration by means of aqueous standards. The exception was lead determined after a wet digestion procedure by ETAAS. The accuracy of the studied methods was checked by the use of the certified reference material Tea GBW-07605. The recoveries of the analytes varied in the range from 91 to 99% for slurry sampling ETAAS, and from 92.5 to 102% for liquid sampling ICP-AES. The advantages of slurry sampling ETAAS method are simplicity of sample preparation and very good sensitivity. Slurry sampling ETAAS method is relatively fast but if several elements must be determined in one sample, the time of the whole microwave-assisted digestion procedure and ICP-AES determination will be shorter. However, worse detection limits of ICP-AES must also be taken into the consideration in a case of some analytes.  相似文献   

2.
Lubricating oils are used to decrease wear and friction of movable parts of engines and turbines, being in that way essential for the performance and the increase of that equipment lifespan. The presence of some metals shows the addition of specific additives such as detergents, dispersals and antioxidants that improve the performance of these lubricants. In this work, a method for determination of calcium, magnesium and zinc in lubricating oil by flame atomic absorption spectrometry (F AAS) was developed. The samples were diluted with a small quantity of aviation kerosene (AVK), n-propanol and water to form a three-component solution before its introduction in the F AAS. Aqueous inorganic standards diluted in the same way have been used for calibration. To assess the accuracy of the new method, it was compared with ABNT NBR 14066 standard method, which consists in diluting the sample with AVK and in quantification by F AAS. Two other validating methods have also been used: the acid digestion and the certified reference material NIST (SRM 1084a). The proposed method provides the following advantages in relation to the standard method: significant reduction of the use of AVK, higher stability of the analytes in the medium and application of aqueous inorganic standards for calibration. The limits of detection for calcium, magnesium and zinc were 1.3 μg g−1, 0.052 μg g−1 and 0.41 μg g−1, respectively. Concentrations of calcium, magnesium and zinc in six different samples obtained by the developed method did not differ significantly from the results obtained by the reference methods at the 95% confidence level (Student's t-test and ANOVA). Therefore, the proposed method becomes an efficient alternative for determination of metals in lubricating oil.  相似文献   

3.
An inductively coupled plasma-atomic emission spectrometric method is reported for the determination of calcium, copper, iron, manganese, magnesium and zinc. Samples are introduced directly when a sheath gas device is used. An external calibration procedure is used. The standards are prepared in a matrix composed of 0.5% (w/v) albumin and 0.76% (w/v) sodium chloride. The procedure was evaluated with a standard reference material (NBS SRM 909 Human Serum); all the values obtained are in agreement with the certified values. Results obtained for the determination of zinc, calcium, magnesium, copper, iron and manganese in amniotic fluid samples are reported.  相似文献   

4.
The present work proposes a direct method based on slurry sampling for the determination of zinc and copper in human hair samples by multi-element sequential flame atomic absorption spectrometry. The slurries were prepared by cryogenic grinding and sonication of the samples. The optimization step was performed using univariate methodology and the factors studied were: nature and concentration of the acid solution, amount sample/slurry volume, sonication time, and particle size. The established experimental conditions are the use of a sample mass of 50 mg, 2 mol L− 1 nitric acid solution, sonication time of 20 min and slurry volume of 10 mL. Adopting the optimized conditions, this method allows the determination of zinc and copper with detection limits of 88.3 and 53.3 ng g− 1, respectively, and precision expressed as relative standard deviation (RSD) of 1.7% and 1.6% (both, n = 10) for contents of zinc and copper of 100.0 and 33.3 μg g− 1, respectively. The accuracy was checked and confirmed by analysis of two certified reference materials of human hair. The procedure was applied for the determination of zinc and copper in two human hair samples. The zinc and copper contents varied from 100.0 to 175.6 and from 3.2 to 32.8 μg g− 1, respectively. These samples were also analyzed after complete digestion in a closed system and determination by FAAS. The statistical comparison by t-test (95% confidence level) showed no significant difference between these results.  相似文献   

5.
微波消解-原子吸收光谱法测定槐花和大黄中微量元素   总被引:22,自引:0,他引:22  
采用微波消解-火焰原子吸收光谱法和石墨炉原子吸收光谱法测定了中药槐花和大黄中铜、铁、锌、镉、铬和铅。研究了槐花和大黄的微波消解试剂和消解条件。在原子吸收光谱测定的最佳条件下测定槐花和大黄中铜、铁、锌、镉、铬和铅。方法的回收率在89.2%~112.0%之间。  相似文献   

6.
A simple procedure for the determination of manganese in different sections of human brain samples by graphite furnace atomic absorption spectrometry has been developed. Brain sections included cerebellum, hypothalamus, frontal cortex, vermix and encephalic trunk. Two sample preparation procedures were evaluated, namely, slurry sampling and microwave-assisted acid digestion. Brain slurries (2% w/v) could be prepared in distilled, de-ionized water, with good stability for up to 30 min. Brain samples were also digested in a domestic microwave oven using 5 ml of concentrated HNO3. A mixed palladium+magnesium nitrate chemical modifier was used for thermal stabilization of the analyte in the electrothermal atomizer up to pyrolysis temperatures of 1300 °C, irrespective of the matrix. Quantitation of manganese was conducted in both cases by means of aqueous standards calibration. The detection limits were 0.3 and 0.4 ng ml−1 for the slurry and the digested samples, respectively. The accuracy of the procedure was checked by comparing the results obtained in the analysis of slurries and digested brain samples, and by analysis of the NIST Bovine Liver standard reference material (SRM 1577a). The ease of slurry preparation, together with the conventional set of analytical and instrumental conditions selected for the determination of manganese make such methodology suitable for routine clinical applications.  相似文献   

7.
A simple and fast analytical procedure has been developed for the determination of As, Sb, Se, Te and Bi in milk samples by hydride generation atomic fluorescence spectrometry (HG-AFS). Samples were treated with aqua regia for 10 min in an ultrasound water bath and pre-reduced with KBr for total Se and Te determination or with KI and ascorbic acid for total As and Sb, the determination of Bi being possible in all with or without pre-reduction. Slurries of samples, in the presence of antifoam A, were treated with NaBH4 in HCl medium to obtain the corresponding hydrides, and AFS measurements were processed in front of external calibrations prepared and measured in the same way as samples. Results obtained by the developed procedure compare well with those found after microwave-assisted complete digestion of samples. The proposed method is simple and fast, and only 1 ml of milk is needed. The values obtained for detection limit are 2.5, 1.6, 3, 6 and 7 ng l−1 for As, Sb, Se, Te and Bi respectively in the diluted samples, with average relative standard deviation values of 3.8, 3.1, 1.9, 6.4 and 1.2% for three independent analysis of a series of commercially available samples of different origin. Data found in Spanish market samples varied from 3.2±0.3 to 11.3±0.2 ng g−1 As, from 3.1±0.2 to 11.6±0.4 ng g−1 Sb, from 10.7±0.5 to 25.5±0.4 ng g−1 Se, from 0.9±0.2 to 9.4±0.6 ng g−1 Te and from 11.5±0.1 to 27.7±0.4 ng g−1 Bi.  相似文献   

8.
Ohno S  Teshima N  Sakai T  Grudpan K  Polasek M 《Talanta》2006,68(3):527-534
A sequential injection (SI) method in a lab-on-valve (LOV) format for simultaneous spectrophotometric determination of copper and iron has been devised. The detection chemistry is based on the complex formation of 2-(5-bromo-2-pyridylazo)-5-[N-n-propyl-N-(3-sulfopropyl)amino]aniline (5-Br-PSAA) with copper(II) and/or iron(II) at pH 4.6. Copper(II) reacts with 5-Br-PSAA to form the complex which has an absorption maximum at 580 nm but iron(III) does not react. In the presence of a reducing agent only iron(II)-5-Br-PSAA complex is formed and detected at 558 nm. Under the optimum experimental conditions, the determinable ranges are 0.1-2 mg l−1 for copper and 0.1-5 mg l−1 for iron, respectively, with a sampling rate of 18 h−1. The limits of detection are 50 μg l−1 for copper and 25 μg l−1 for iron. The relative standard deviations (n = 15) are 2% for 0.5 mg l−1 copper and 1.8% for 0.5 mg l−1 iron when determined in standard solutions. The recoveries range between 96 and 105% when determining 0.25-2 mg l−1 of copper and 0.2-5 mg l−1 of iron in artificial mixtures at copper/iron ratios of 1:10 to 5:1. The proposed SI-LOV method is successfully applied to the simultaneous determination of copper and iron in multi-element standard solution and in industrial wastewater samples.  相似文献   

9.
《Analytical letters》2012,45(17-18):1435-1447
Abstract

The new method, proposed in a preceeding paper for the determination of elements in plant material by flame atomic absorption spectroscopy (FAAS) with liquid sampling of carbonaceous slurry, was tested on other kinds of organic material such as vegetable foods and feeds. Results are reported for the determination of calcium, magnesium, potassium, iron, manganese, zinc and copper in these materials. Also, the analytical results relative to the determination of cadmium by graphite-tube furnace atomic absorption spectroscopy (GTFAAS) for two matrices are given. In all cases accuracy and precision of the analytical procedure were ascertained.  相似文献   

10.
Copper, iron and zinc were determined in serum by simultaneous atomic absorption spectrometry (SIMAAS). The minimalism approach was adopted throughout this analytical method, to reduce time, costs, sample, reagent, energy requirements, and residue production. Samples were 80-fold diluted with 0.01% (w/v) Triton X-100+1% (v/v) HNO3 directly in the autosampler cups. Three strategies were implemented to match the final diluted analyte concentrations with the SIMAAS linear concentration ranges: a reduced 5 μl aliquot of analytical reference or diluted sample solution was introduced into the preheated graphite tube at 100 °C; a super-estimated pyrolysis temperature was chosen for selective zinc volatilization; and a mini argon flow of 50 ml min−1 was used during the atomization step. The pyrolysis and atomization temperatures for the simultaneous heating program were 700 and 2300 °C, respectively. The characteristic masses for copper (26 pg), iron (16 pg), and zinc (2.7 pg) were estimated from the analytical graphs. The detection limits (n=20, 3σ) were 4.0, 2.2, and 0.4 μg l−1 for copper, iron and zinc, respectively. The reliability of the entire procedure was checked with the analysis of Seronorm™ trace elements in serum (Sero AS). Serum samples of five volunteers were analyzed and the recovery tests for additions of 2.0, 2.0 and 1.0 mg l−1 were 100±4, 99±6, and 95±5% for copper, iron and zinc, respectively.  相似文献   

11.
The evaluation of the use of alkaline peroxodisulfate digestion with low pressure microwave, autoclave or hot water bath heating for the determination of total phosphorus and nitrogen in turbid lake and river waters is described. The efficiency of these digestion procedures were compared to a Kjeldahl digestion procedure with sulphuric acid-potassium sulfate and copper sulfate. The final solution before digestion was 0.045 M in potassium peroxodisulfate and 0.04 M in sodium hydroxide. Procedures were evaluated by the analysis of suspensions of two reference materials, National Institute of Environmental Science, Japan, no. 3 Chlorella and no. 2 pond sediment and natural turbid waters. Best recoveries of phosphorus and nitrogen by microwave heating were obtained when solutions were digested at 95 °C for 40 min. Quantitative recoveries of phosphorus from Chlorella suspensions up to 1000 mg/l were obtained by all three heating procedures, but incomplete recoveries of nitrogen occurred above 20 mg N/l in the digested sample. Good recoveries of phosphorus and nitrogen from suspended sediment suspensions were obtained only from solutions containing <150 mg/l of suspended sediments. Recoveries of phosphorus from phosphorus compounds containing COP and CP bonds added to distilled water were quantitative (94-113%) except for polyphosphates (microwave, 34±8; autoclave, 114±6; water bath, 96±4) and aluminium phosphate (8-23%). Recoveries of nitrogen compounds containing CN bonds added to distilled water were quantitative (94-96%). The analysis of a range of natural turbid water samples by alkaline peroxodisulfate and microwave, autoclave and water bath heating gave similar total phosphorus and nitrogen results. All procedures using alkaline peroxodisulfate underestimate phosphorus concentrations at high suspended sediment concentrations (>150 mg/l) and are only suitable for the analysis of very turbid samples when the turbidity is due to organic matter (algal cells, plant detritus). Underestimation of nitrogen occurs when samples contain more than 20 mg N/l.  相似文献   

12.
The optimization and the analytical properties of an injection technique for the analysis of small-volume samples (50–200 μl) by inductively coupled plasma atomic emission spectroscopy (ICP-AES) are described. Samples are injected into a small funnel connected to a concentric glass nebulizer. A 3 kW argon/nitrogen ICP with power stabilization is used as excitation source. When operating the nebulizer at an argon pressure of 5 bar, relative detection limits for calcium, copper, iron, magnesium and zinc (0.2–50 ngml) are a factor of 2 to 10 higher when compared with ICP methods using continuous nebulization. However, the full power of detection of the injection method is obtained at a 50 μl sampling volume. Matrix effects caused by sodium salt concentrations of 5 gl are lower than 10%. Relative standard deviations sr,(IX) ranged from 0.03 to 0.07. The method was applied to the sequential determination of trace elements (copper, iron and magnesium) in human serum samples after a 1 + 4 dilution with Herrmann solution. The accuracy of the method is illustrated by the analysis results for calcium, copper, iron, magnesium and zinc in a series of test serum samples.  相似文献   

13.
建立了用微波消解-电感耦合等离子体质谱法(ICP-MS)同时测定硫磺中18种微量元素(锂、镁、铝、钙、钒、铬、锰、铁、钴、镍、铜、锌、镉、砷、硒、钡、铅和汞)的定量分析方法。通过对消解所用试剂及条件进行研究,确定最佳的样品处理条件;为了获得最佳的信噪比并降低光谱干扰,研究采用单变量方法,对ICP-MS的射频功率和雾化气体流量等因素进行了性能优化。结果显示:该方法各元素的校准曲线线性相关系数在0.999以上,所有元素的检出限(LODs) 在0.001-0.962 mg/Kg之间,测定下限范围在0.004-3.85 mg/Kg之间,回收率在82.9 %~115 %之间,相对标准偏差均小于3 %。  相似文献   

14.
Ligang Chen 《Talanta》2010,82(4):1186-1192
A green and simple method was developed for determination of sulfonamides (SAs) in soil samples. The procedure was based on the microwave-assisted extraction (MAE) of SAs from soil using non-ionic surfactant Triton X-114 as the extraction medium. Then sodium chloride was added into the MAE extract and the mixture was equilibrated for some time at high temperature. The analytes in the surfactant-rich phase were concentrated with the help of centrifugation and directly analyzed by high performance liquid chromatography with UV detection. None of potentially hazardous organic solvents was used in the whole sample preparation procedure. The significant variables for the performance of extraction and concentration were studied. The limits of detection of SAs obtained are in the range of 3.2-5.7 ng g−1. The relative standard deviations of intra- and inter-day tests ranging from 3.5% to 7.7% and from 4.6% to 9.5% are obtained, respectively. This method was applied to the determination of SAs in some soil samples with different characteristics. The SAs recoveries obtained at fortified level of 100 ng g−1 for these samples are in the range of 81.2-93.7%. The effect of ageing time of spiked soil samples on the SAs recoveries was examined by the proposed method and a method reported in the literature. The recoveries of SAs decreased when the ageing time changed from 1 day to 4 weeks.  相似文献   

15.
The method of ultrasound-assisted extraction followed by inductively coupled plasma optical emission spectrometry (ICP-OES) used for the determination of trace element concentrations (arsenic, copper, lead, antimony, and zinc) in shooting range areas was optimized. Optimization was achieved not only on the basis of the analysis of appropriate standard reference materials but also on that of 31 synthetic mixtures of matrix and analyte elements (aluminum, antimony, arsenic, calcium, copper, lead, iron, manganese, silicon, and zinc), in five concentrations. All the measurements were performed in robust plasma conditions which were tested by measuring the Mg II 280.270 nm/Mg I 285.213 nm line intensity ratio. The highest Mg II 280.270 nm/Mg I 285.213 nm line intensity ratios were observed when a nebulizer gas flow of 0.8 L min−1, auxiliary gas flow of 0.2 L min−1 and plasma power of 1400 W were used for both the axially and radially viewed plasmas. The analysis of 31 synthetic mixtures of the selected elements showed that As concentrations could be accurately determined with axially viewed plasma alone. The determination of Pb and Sb could be performed with either axially or radially viewed plasma whereas, surprisingly, Cu could be determined with high accuracy using radial plasma alone with a power of 1400 W. All the elements investigated were determined with high accuracy using robust plasma conditions and a combination of axially and radially viewed plasmas. The total recoveries of elements from SRM 2710 (Montana soil) and SRM 2782 (Industrial sludge) were highly comparable to leach recoveries certified by the National Institute of Standards and Technology (NIST).  相似文献   

16.
应用微波消解,电感耦合等离子体原子发射光谱法同时测定锅炉水中的钙、镁、铜、铁、铝、锌六种金属元素.对射频功率、雾化气流量、分析线进行了优化.各元素校准曲线的相关系数均在0.999 5以上,检出限在0.000 7~0.006 0 mg/L之间.样品分析结果的相对标准偏差为0.48%~6.8%,加标回收率为94.0%~105%.  相似文献   

17.
Jakmunee J  Junsomboon J 《Talanta》2008,77(1):172-175
An anodic stripping voltammetric method has been developed for determination of cadmium, lead, copper and zinc in acetic acid extract of glazed ceramic surfaces. An aliquot of 4% (v/v) acetic acid solution was kept in a ceramic ware for 24 h in the dark, then 10 mL of the extracted solution was placed in a voltammetric cell. The solution was purged with oxygen free nitrogen gas for 3 min before deposition of the metals was carried out by applying a constant potential of −1.20 V versus Ag/AgCl to the hanging mercury drop electrode (HMDE) for 45 s. A square wave waveform was scanned from −1.20 to 0.15 V and a voltammogram was recorded. A standard addition procedure was used for quantification. Detection limits of 0.25, 0.07, 2.7 and 0.5 μg L−1 for cadmium, lead copper and zinc, respectively, were obtained. Relative standard deviations for 11 replicate determinations of 100 μg L−1 each of all the metals were in the range of 2.8-3.6%. Percentage recoveries obtained by spiking 50 μg L−1 of each metal to the sample solution were in the range of 105-113%. The method was successfully applied to ceramic wares producing in Lampang province of Thailand. It was found that the contents of cadmium, lead, copper and zinc released from the samples were in the range of <0.01-0.16, 0.02-0.45, <0.14 and 0.28-10.36 μg dm−2, respectively, which are lower than the regulated values of the Thai industrial standard. The proposed method is simpler, more convenient and more sensitive than the standard method based on FAAS.  相似文献   

18.
An on-line automated flow injection system with microwave-assisted sample digestion was used to perform silicate rock dissolution in acid medium for iron determination. For this purpose, a continuous flow system was built up by using an automatic flow injection analysis (FIA) system coupled to a flame atomic absorption spectrometer (FAAS), including a focused microwave oven unit. Inside the microwave cavity was inserted a polytetrafluoroethylene (PTFE) reactor coil (300 cm length and 0.8 mm i.d.) where the dissolution takes place. Chemical and flow variables as well as iron determination parameters were studied. In the flow system, a slurry of the rock sample (50 mg in 200 ml of acid mixture HF+HCl+HNO3) is pumped through the reaction coil and the microwaves are turned on. After elapsed the time required to complete the sample dissolution, the mixture is pumped again in order to fill the sampling loop (500 μl). Then, by changing the valve position, a water carrier stream pushes the sample solution through the flame atomic absorption spectrometer nebulizer. To achieve an accurate determination of the rock certified materials, the slurry sample was irradiated during 210 s at 90 W power. Working in that condition, a detection limit of 0.80 μg ml−1 (which corresponds to an Fe2O3 content of 0.46%) and an analytical throughput of 10 h−1 were achieved. The relative standard deviation (R.S.D.) of the method varied between 1 and 11% when applied to the rock certified materials.  相似文献   

19.
Two analytical methods for the determination of cadmium in wheat flour by electrothermal atomic absorption spectrometry without prior sample digestion have been compared: direct solid sampling analysis (SS) and slurry sampling (SlS). Besides the conventional modifier mixture of palladium and magnesium nitrates (10 μg Pd + 3 μg Mg), 0.05% (v/v) Triton X-100 has been added to improve the penetration of the modifier solution into the solid sample, and 0.1% H2O2 in order to promote an in situ digestion for SS. For SlS, 30 μg Pd, 12 μg Mg and 0.05% (v/v) Triton X-100 have been used as the modifier mixture. Under these conditions, and using a pyrolysis temperature of 800 °C, essentially no background absorption was observed with an atomization temperature of 1600 °C. About 2 mg of sample have been typically used for SS, although as much as 3-5 mg could have been introduced. In the case of SlS multiple injections had to be used to achieve the sensitivity required for this determination. Calibration against aqueous standards was feasible for both methods. The characteristic mass obtained with SS was 0.6 pg, and that with SlS was 1.0 pg. The limits of detection were 0.4 and 0.7 ng g−1, the limits of quantification were 1.3 and 2.3 ng g−1 and the relative standard deviation (n = 5) was 6-16% and 9-23% for SS and SlS, respectively. The accuracy was confirmed by the analysis of certified reference materials. The two methods were applied for the determination of cadmium in six wheat flour samples acquired in supermarkets of different Brazilian cities. The cadmium content varied between 8.9 ± 0.5 and 13 ± 2 ng g−1 (n = 5). Direct SS gave results similar to those obtained with SlS using multi-injections; the values of both techniques showed no statistically significant difference at the 95% confidence level. Direct SS was finally adopted as the method of choice, due to its greater simplicity, the faster speed of analysis and the better figures of merit.  相似文献   

20.
《Microchemical Journal》2008,88(2):128-131
The present work proposes a direct method based on slurry sampling for the determination of zinc and copper in human hair samples by multi-element sequential flame atomic absorption spectrometry. The slurries were prepared by cryogenic grinding and sonication of the samples. The optimization step was performed using univariate methodology and the factors studied were: nature and concentration of the acid solution, amount sample/slurry volume, sonication time, and particle size. The established experimental conditions are the use of a sample mass of 50 mg, 2 mol L 1 nitric acid solution, sonication time of 20 min and slurry volume of 10 mL. Adopting the optimized conditions, this method allows the determination of zinc and copper with detection limits of 88.3 and 53.3 ng g 1, respectively, and precision expressed as relative standard deviation (RSD) of 1.7% and 1.6% (both, n = 10) for contents of zinc and copper of 100.0 and 33.3 μg g 1, respectively. The accuracy was checked and confirmed by analysis of two certified reference materials of human hair. The procedure was applied for the determination of zinc and copper in two human hair samples. The zinc and copper contents varied from 100.0 to 175.6 and from 3.2 to 32.8 μg g 1, respectively. These samples were also analyzed after complete digestion in a closed system and determination by FAAS. The statistical comparison by t-test (95% confidence level) showed no significant difference between these results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号