首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 43 毫秒
1.
Pan X  Zhang B  Cobb GP 《Talanta》2005,67(4):816-823
An efficient extraction and cleanup technique, and an instrumental detection method suitable for determination of trace amounts of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and its nitroso-metabolites in animal liver tissue were developed and validated in this paper. The method includes the extraction of explosives from liver tissue samples using accelerated solvent extraction (ASE) followed by cleanup using florisil and styrene-divinyl benzene (SDB) cartridges to remove interfering naturally endogenous compounds. The instrumental analysis was conducted using a capillary column gas chromatograph coupled with an electron capture detector (GC-ECD). High recoveries (58.9-106.8%) of RDX, hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine (MNX), hexahydro-1,3-dinitroso-5-nitro-1,3,5-triazine (DNX), and hexahydro-1,3,5-trinitroso-1,3,5-triazine (TNX) were achieved at all concentrations studied. RDX, MNX, and TNX gave higher recoveries than DNX at all three tested concentrations (50, 250, 1250 ng/g). Overall recoveries of RDX, MNX, DNX, and TNX from 1 g beef liver samples containing 50, 250, and 1250 ng/g were 80.1, 82.8, 68.9, and 80.4%, respectively. The optimal injection port temperature range was 160-170 °C for analysis of RDX and its nitroso-metabolites. Higher or lower temperatures than 160-170 °C decreased signal amplitudes. RDX was unstable in the liver extraction matrix; as much as 50% of RDX was degraded 10 days after extraction if keeping the liver sample extracts at room temperature. Degradation of RDX to MNX, DNX, or TNX was not detected during the sample storage, extraction, or instrument analysis processes. Other optimized extraction and GC conditions are also discussed.  相似文献   

2.
To aid in the evaluation of the potential toxicity of N-nitroso derivatives of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), we describe a pressurized liquid extraction (PLE) followed by liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS) method for determination of RDX and its N-nitroso derivatives: hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine (MNX), hexahydro-1,3-dinitroso-5-nitro-1,3,5-triazine (DNX), and hexahydro-1,3,5-trinitroso-1,3,5-triazine (TNX) in soils. Sandy loam soil was spiked with RDX and its N-nitroso derivatives (MNX, DNX, and TNX). Acetonitrile was used as the PLE extraction solvent at 100 degrees C and 1500 psi for 15 min. Florisil was used to cleanup extracts following PLE. Instrumental analysis employed LC-ESI-MS, in which 1mM acetic acid was added to the mobile phase to facilitate formation of acetate adduct ions [M+CH(3)COO](-). The method detection limits (MDLs) for RDX, MNX, DNX, and TNX were 1.46, 1.46, 1.69, and 1.93 ng/g, respectively. High recovery (91.1-108.3%), good precision (RSD: 3.2-12.4%), and reproducibility were achieved. This method proved effective and was applied to monitor the reductive biotransformation of MNX in soils with the presence of earthworms (Eisenia fetida).  相似文献   

3.
The use of solid-phase extraction for the analysis of liquid media containing low microg/L levels of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), mononitroso-RDX (MNX), dinitroso-RDX (DNX), and trinitroso-RDX (TNX) is examined. Aqueous samples (100 mL) consisting of water and a microbiological basal medium are spiked with known concentrations of RDX, MNX, DNX, and TNX. The compounds are extracted from the liquid media using a Porapak RDX cartridge and then eluted from the cartridge with 5 mL of acetonitrile. The eluent is concentrated to 1 mL before analysis by high-pressure liquid chromatography (HPLC). The method detection limits for RDX are 0.1 microg/L in water and 0.5 microg/L in the basal medium after a 100-fold concentration. For MNX, DNX, and TNX, the method detection limits are approximately 0.5 microg/L in water and approximately 1 microg/L in the basal medium after a 100-fold concentration. Interferences in the basal medium and a contaminant in the standard made quantitation for MNX and TNX, respectively, is less accurate below the 1 microg/L level. Solid-phase extraction of the liquid media gave good recoveries of nitramines and nitroso intermediates from a microbiological basal medium, allowing HPLC detection of RDX and the nitroso intermediates in the low microg/L (ppb) range.  相似文献   

4.
The uptake kinetics of two major RDX (hexahydro-1,3,5-trinitro-1,3,5-triazacyclohexane) metabolites, hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine (MNX) and hexahydro-1,3,5-trinitroso-1,3,5-triazine (TNX), into passive sampling devices (PSDs), and the ability of PSDs to serve as surrogates for evaluating bioavailability of MNX and TNX were investigated in laboratory sand and two soil types. The results indicate that MNX and TNX absorption into PSDs was best fitted with a polynomial curve model: y = ax2 + bx + c (y: amount of MNX or TNX absorbed into PSD; x: incubation time of PSDs in soil), with an excellent correlation coefficient (>0.95) for each type of soil amended with 10 mg/kg MNX or TNX. TNX was more readily absorbed by PSDs than MNX. Soil conditions, especially organic matter content, affected MNX and TNX uptake into PSDs. A relatively good correlation between MNX and TNX uptake into PSDs and uptake into earthworms was obtained in two types of natural soils (a silt loam soil from Nebraska and a sandy loam soil from Texas) and laboratory sand. A linear relationship between PSD uptake and earthworm uptake was observed. The correlation coefficients (r2) were > or = 0.82 for all test soils spiked with MNX or TNX. Organic matter content is one soil factor that affected the ratio of MNX or TNX uptake into earthworms versus uptake into PSDs. These data indicate that C18 PSDs may be used as a surrogate for soil organisms such as earthworms and provide a simple and easy chemical test for assessing the bioavailability of contaminants in soils.  相似文献   

5.
In this study, based on two model nitramine compounds hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and octahydro-1,3,5,7-tetranitro-1,3,5, 7-tetrazocine (HMX), two series of new energetic molecules were designed by replacing carbon atoms in the ring with different amounts of boron atoms, their structures and performances were investigated theoretically by the density functional theory method. The results showed that the boron replacement could affect the molecular shape and electronic structure of RDX and HMX greatly, and then would do harm to the main performance like the heat of formation, density, and sensitivity. However, the compound RDX-B2 is an exception; it was formed by replacing two boron atoms into the system of RDX and has the symmetric boat-like structure. Its oxygen balance (4.9%), density (1.91 g/cm3), detonation velocity (8.85 km/s), and detonation pressure (36.9 GPa) are all higher than RDX. Furthermore, RDX-B2 has shorter and stronger N NO2 bonds than RDX, making it possesses lower sensitivity (45 cm) and better thermal stability (the bond dissociation energy for the N NO2 bond is 204.7 kJ/mol) than RDX. Besides, RDX-B1 and HMX-B4 also have good overall performance; these three new molecules may be regarded as a new potential candidate for high energy density compounds.  相似文献   

6.
An analytical method based on the cloud point extraction combined with high performance liquid chromatography is used for the extraction, separation and determination of four explosives; octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazine (HMX), hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), 2,4,6-trinitrotoluene (TNT) and pentaerythritol tetranitrate (PETN). These compounds are extracted by using of Triton X-114 and cetyl-trimethyl ammonium bromide (CTAB). After extraction, the samples were analyzed using a HPLC-UV system. The parameters affecting extraction efficiency (such as Triton X-114 and CTAB concentrations, amount of Na2SO4, temperature, incubation and centrifuge times) were evaluated and optimized. Under the optimum conditions, the preconcentration factor was 40 and the improvement factors of 34, 29, 61 and 42 with detection limits of 0.09, 0.14, 0.08 and 0.40 (μg L−1) were obtained for HMX, RDX, TNT and PETN, respectively. The proposed method was successfully applied to the determination of these compounds in water samples and showed recovery percentages of 97-102% with RSD values of 2.13-4.92%.  相似文献   

7.
A simple and sensitive method has been developed using preconcentration technique solid phase microextraction (SPME) and analytical technique HPLC-UV for the determination of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) from the environmental samples. Aqueous solution of anionic surfactant SDS was used for the extraction of both nitramine high explosives, viz., HMX and RDX from soil samples which were subsequently sorbed on SPME fiber. The static desorption was carried out in the desorption chamber of the SPME-HPLC interface in the presence of mobile phase ACN/methanol/water (30:35:35) and the subsequent chromatographic analysis at a flow rate of 0.5 mL/min and detection at 230 nm. For this purpose, a C(18), 5 microm RP analytical column was used as a separation medium in this method. Several parameters relating to SPME, e.g., adsorption/desorption time, concentration of salt, stirring rate, etc., were optimized. The method was linear over the range of 20-400 ng/mL for HMX and RDX standards in the presence of surfactant in aqueous phase, respectively. The correlation coefficient (R(2)) for HMX and RDX are 0.9998 and 0.9982, respectively. With SPME, the detection limits (S/N = 3) in ng/mL are 0.05 and 0.1 for HMX and RDX, respectively in the presence of the SDS surfactant. The developed method has been applied successfully to the analysis of real environmental samples like bore well water, river water, and ground alluvial soil.  相似文献   

8.
An Agilent 3DCE capillary electrophoresis system using sulfobutylether-beta-cyclodextrin (SB-beta-CD)-ammonium acetate separation buffer pH 6.9 was coupled to a Bruker Esquire 3000+ quadrupole ion trap mass detector via a commercially available electrospray ionization interface with acetonitrile sheath flow. The CE-MS system was applied in negative ionization mode for the resolution and detection of nitroaromatic and polar cyclic or caged nitramine energetic materials including TNT [2,4,6-trinitrotoluene, formula mass (FW) 227.13], TNB (1,3,5-trinitrobenzene, FW 213.12), RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine, FW 222.26) HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine, FW 296.16), and CL-20 (2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane, FW 438.19). The CE-MS system conformed to the high-performance liquid chromatography with ultraviolet absorbance detection (HPLC-UV) and HPLC-MS reference methods for the identification of energetic contaminants and their degradation products in soil and marine sediment samples.  相似文献   

9.
Four novel cage compounds were designed by introducing –N(NO2)CH2–, –N(NO2)O–, –N(NO2)N(NO2)–, and –N=N– linkages into the RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) skeleton. Their molecular geometry, electronic structure, heat of formation, and detonation properties were systematically studied using density functional theory (DFT). In addition, the most stable dimers of the four compounds were constructed to further investigate their stability based on intermolecular interactions. It is found that the unconventional CH⋯O interactions would be the dominant driving force when the title compounds form crystals. Compared with the traditional explosives, the compounds with higher detonation properties and lower impact sensitivity will be considered as promising candidates for high energy density compounds. Our results indicate that our innovative design strategy is extremely useful for developing novel energetic compounds.  相似文献   

10.
A method for enhanced extraction of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) from environmental samples is developed with the assistance of sodium dodecyl sulphate (SDS) surfactant. In this study, the concentration of SDS surfactant and other analytical parameters are optimized on a high-performance liquid chromatography-UV system. An isocratic flow of 1.0 mL/min with mobile phase acetonitrile-water; 70:30 (v/v) at 230 nm wavelength on a reverse-phase amide column is used for baseline separation of explosives and making calibration curves. The amount of recovered explosives from spiked soil and water samples are calculated. The limits of detection obtained for HMX and RDX standards are 1.5 and 3.8 ppb (S/N=3), respectively, which are much better than obtained by the Environmental Protection Agency method 8330. The recoveries are found to be enhanced by 1.7 and 1.6-fold with SDS solution as compared to water for HMX and RDX, respectively, from soil samples.  相似文献   

11.
Fluorescent membrane formulations for detecting organic nitro compounds by fluorescence quenching were evaluated. The most sensitive membrane is prepared by solvent casting from cyclohexanone to incorporate pyrenebutyric acid into cellulose triacetate plasticized with isodecyl diphenylphosphate. The response follows the Stern-Volmer law for 2,4,6-trinitrotoluene (TNT) and 2,4-dinitrotoluene (DNT). The membrane also responds to hexahydro-1,3,5-tri- nitro-1,3,5-triazine (RDX). For a given set of conditions, the primary factor determining sensitivity is the extent to which each nitro compound partitions into the membrane. Detection limits are ca. 2 mg l?1 for DNT and TNT and 10 mg l?1 for RDX. Nitrogen purging prior to the measurement enhances the sensitivity and eliminates interference from oxygen. The membrane is designed to be used for remote optical in situ screening of groundwater for contamination by explosives.  相似文献   

12.
Ly SY  Kim DH  Kim MH 《Talanta》2002,58(5):919-926
A mercury film (MF) is prepared by an electrochemical deposition on a glassy carbon electrode (GCE), and employed for an analysis of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) using square-wave stripping voltammetry (SWSV). RDX was deposited at -0.15 V (vs. Ag/AgCl) for 120 s, then reduced at -0.7 V on the MF coated GCE(MFGCE). Optimal experimental conditions were searched and reported for the analysis. Two linear concentration ranges were observed: one in a lower RDX concentration range of 0.2-10 mg l(-1) and the other in a higher RDX concentration range of 10.0-100.0 mg l(-1) with a 120 s of pre-concentration time. At RDX concentrations of 2 and 8 mg l(-1), the relative standard deviations in measured concentrations (n=16) were 9.79 and 0.49%, respectively. The detection limit found to be 0.12 mg l(-1) with the 120 s accumulation time. The method was applied to determine RDX in several soil samples that yielded a relative error of 1% in the concentrations.  相似文献   

13.
The structure of 2,4,6-tris[di(tert-butoxycarbonyl)methylidene]hexahydro-1,3,5-triazine was studied by quantum chemistry, NMR and IR spectroscopy, and X-ray diffraction. This compound exists exclusively in the hexahydro-1,3,5-triazine form both in solution and in the solid phase, although due to the loss of the aromatization energy, this structure should be less stable than a 1,3,5-triazine structure. The formation of strong intramolecular hydrogen bonds confirmed by NMR and IR spectroscopy and X-ray diffraction data may be a main reason for stabilization of the hexahydro-1,3,5-triazine isomer. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 6, pp. 1022–1026, June, 2006.  相似文献   

14.
Contamination of groundwater, soil, and the marine environment by explosives is a global issue. Identification, characterization and remediation are all required for a site recognized as contaminated with 2,4,6-trinitrotoluene (TNT) or hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). For each step, a method to accurately measure the contaminant level is needed. This paper reviews some of the current methods with emphasis on a single biosensor developed in our laboratory. Current regulatory methods require samples to be sent off-site to a certified laboratory resulting in time delays up to a month. A continuous flow biosensor for detection of explosives has been developed and tested for the rapid field screening of environmental samples. The detection system is based on a displacement immunoassay in which monoclonal antibodies to (TNT) and RDX are immobilized on solid substrates, allowed to bind fluorescently labeled antigens, and then exposed to explosives in aqueous samples. Explosive compounds present in the sample displace proportional amounts of the fluorescent label, which can then be measured to determine the original TNT or RDX concentration. The system can accurately detect ppb to ppt levels of explosives in groundwater or seawater samples and in extracts of contaminated soil. The biosensor has applications in environmental monitoring at remediation sites or in the location of underwater unexploded ordnance.  相似文献   

15.
Zhang  Shuai  Zhao  Tianbo  Luo  Guan  Huang  Hui  Cai  Zhongzhan  Wang  Pingsheng 《Chromatographia》2012,75(19):1199-1204

An efficient and reliable technique to evaluate the degree of coverage of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) was described. The method was based on a quantitative analysis of RDX leakage carried out with a high performance of liquid chromatography (HPLC). For this study, replicated analyses were performed on coated samples prepared by different kinds of coating materials and methods. The efficiency of characterization by using both HPLC and scanning electron microscope was compared. To note, the evaluation through former technique is more on macroscopic perspective rather than morphological observation of sample. Meanwhile, the HPLC method also provided characterization results that were in good agreement with morphology observation. A noteworthy advantage of this original technique is that the evaluation of coating quality of melt-cast explosives can be carried out under similar conditions. The experimental data were provided for deep understanding of the soluble behavior of coated RDX and its possible applications in practical problems.

  相似文献   

16.
L S Riter  Z Takáts  R G Cooks 《The Analyst》2001,126(11):1980-1984
Construction, optimization, and testing of a novel single-sided configuration for a semi-permeable [poly(dimethylsiloxane); PDMS] membrane introduction system for mass spectrometry is described. On-line detection of semi-volatile organic compounds of environmental interest is shown, including lindane (a pesticide), hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) (an explosive), butylated hydroxytoluene (BHT) (an antioxidant), 1,2-dichlorobenzene, dimethylmethyl phosphonate (DMMP) (a chemical warfare agent simulant) and naphthalene. The technique has limits of detection in the sub-ppb range. with rise times of 4 to 7 s and fall times of 12 to 36 s and a response that is linear over 4 orders of magnitude (from 0.1 ppb to 1000 ppb for DMMP). The cycle time, from crude air sampling to acquisition of results, is approximately 1 min. No sample preparation is necessary.  相似文献   

17.
A new analytical method is presented for the compound-specific carbon and nitrogen isotope ratio analysis of a thermo-labile nitramine explosive hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by gas chromatograph coupled to an isotope ratio mass spectrometer (GC-IRMS). Two main approaches were used to minimise thermal decomposition of the compound during gas chromatographic separation: programmed temperature vaporisation (PTV) as an injection technique and a high-temperature ramp rate during the GC run. δ15N and δ13C values of RDX measured by GC-IRMS and elemental analyser (EA)-IRMS were in good agreement within a standard deviation of 0.3‰ and 0.4‰ for nitrogen and carbon, respectively. Application of the method for the isotope analysis of RDX during alkaline hydrolysis at 50°C revealed isotope fractionation factors ε carbon?=??7.8‰ and ε nitrogen?=??5.3‰.  相似文献   

18.
1,1-二氨基-2,2-二硝基乙烯的合成与性能研究   总被引:1,自引:0,他引:1  
以2-甲基嘧啶-4,6-二酮为原料, 通过硝化和水解过程合成出FOX-7 (1,1-二氨基-2,2-二硝基乙烯), 经IR, MS, NMR和元素分析鉴定了其结构, 并对影响得率的主要因素进行了简要分析. 重结晶提纯后培养合成产物的单晶, 用四圆衍射仪对其进行了结构解析, 得到了合成产物的晶体学数据. 测试了FOX-7的电火花感度和落锤感度, 并同RDX (1,3,5-三硝基-1,3,5-三氮杂环己烷)、HMX(环四甲撑四硝胺)以及TATB(三氨基三硝基苯)进行了对比, 结果表明FOX-7的感度要低于RDX, 但较TATB差. 同时对原始样品和重结晶FOX-7的外观形貌和热性质进行了测试, 并对变化情况进行了说明, 发现FOX-7的外观形貌和热性质可以进一步改善和优化.  相似文献   

19.
用密度泛函理论(DFT)B3LYP方法,在6-31G*基组水平下,全优化计算了环五甲撑五硝胺(CRX)的分子几何和优化构型下的电子结构.环C-N键长为0.144~0.148 nm, N-NO2键长为0.139~0.142 nm; CRX的最高占有MO(HOMO)能级和最低未占MO(LUMO)能级之间的差值ΔEg(5.2054 eV)较大,预示CRX较稳定.基于简谐振动分析求得IR谱频率和强度.运用统计热力学方法,求得在200~1200 K的热力学性质C0p,m、 S0m和H0m.还运用Kamlet公式预示了它的爆速和爆压分别为9169 m/s和37.88 GPa.  相似文献   

20.
The chemical and physical fates of trace amounts (<50 μg) of explosives containing 2,4,6-trinitrotoluene (TNT), hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), and pentaerythritol tetranitrate (PETN) were determined for the purpose of informing the capabilities of tactical trace explosive detection systems. From these measurements, it was found that the mass decreases and the chemical composition changes on a time scale of hours, with the loss mechanism due to a combination of sublimation and photodegradation. The rates for these processes were dependent on the explosive composition, as well as on both the ambient temperature and the size distribution of the explosive particulates. From these results, a persistence model was developed and applied to model the time dependence of both the mass and areal coverage of the fingerprints, resulting in a predictive capability for determining fingerprint fate. Chemical analysis confirmed that sublimation rates for TNT were depressed by UV (330-400 nm) exposure due to photochemically driven increases in the molecular weight, whereas the opposite was observed for RDX. No changes were observed for PETN upon exposure to UV radiation, and this was attributed to its low UV absorbance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号