首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The human interleukine‐2 gene (hIL‐2) is detected with a label‐free DNA hybridization biosensor using a non‐inosine substituted probe. The sensor relies on the immobilization of a 20‐mer antisense single strand oligonucleotide (chIL‐2) related to the human interleukine‐2 gene on the pencil graphite electrode (PGE) as a probe. The guanine oxidation signal was monitored using anodic differential pulse voltammetry (ADPV). The electrochemical pretreatment of the polished PGE at 1.80 V for 5 min is suggested. Then, 5 min immobilization at 0.50 V was found as the optimum condition for immobilization of the probe. The electrochemical detection of hybridization between chIL‐2 and hIL‐2 as a target was accomplished. The selectivity of the biosensor was studied using noncomplementary oligonucleotides. Diagnostic performance of the biosensor is described and the detection limit is found 36 pg/μL.  相似文献   

2.
Development of an electrochemical DNA biosensor based on a human interleukine-2 (IL-2) gene probe, using a pencil graphite electrode (PGE) as transducer and methylene blue (MB) as electroactive label is described. The sensor relies on the immobilization of a 20-mer single stranded oligonucleotide probe (hIL-2) related to the IL-2 gene on the electrode. The hybridization between the probe and its complementary sequence (chIL-2) as the target was studied by square wave voltammetry (SWV) of MB accumulated on the PGE. In this approach the extent of hybridization is evaluated on the basis of the difference between SWV signals of MB accumulated on the probe-PGE and MB accumulated on the probe-target-PGE. Some hybridization experiments with non-complementary oligonucleotides were carried out to assess whether the suggested DNA sensor responds selectively to the target. Some experimental variables affecting the performance of the biosensor including: polishing of PGE, its electrochemical activation conditions (i.e., activation potential and activation time) and probe immobilization conditions on the electrodes (i.e., immobilization potential and time) were investigated and the optimum values of 1.80 V and 300 s for PGE activation, and −0.5 V and 400 s for the probe immobilization on the electrode were suggested.  相似文献   

3.
Tzung-Jie Yang 《Talanta》2010,82(2):766-770
A novel method for electrically assisted microextraction coupled to liquid chromatography-mass spectrometry was evaluated for determination of trace levels of parathion in water. A pencil lead electrode was used in a di-electrode system to extract parathion onto the electrode surface with a reductive potential applied. The optimum extraction conditions were found to be a potential of −600 mV for 60 s in pH 2 phosphate buffer solution. The parathion was desorbed statically for 1 min and dynamically for 3 min in the commercial SPME-HPLC desorption chamber, then analyzed with LC-APCI-MS/MS. The detection limit (LOD) for parathion in water was found to be 0.3 ng/mL. The proposed technique was demonstrated to be fast, sensitive and not require a solvent sample pretreatment.  相似文献   

4.
A method based on capillary electrophoresis with electrochemical detection has been developed for the separation and determination of mannitol, sucrose, glucose, and fructose in Ligustrum lucidum Ait. for the first time. Effects of several important factors such as the concentration of NaOH, separation voltage, injection time, and detection potential were investigated to acquire the optimum conditions. The detection electrode was a 300 μm diameter copper disc electrode at a working potential of +0.65 V (versus saturated calomel electrode (SCE)). The four analytes can be well separated within 13 min in a 40 cm length fused-silica capillary at a separation voltage of 12 kV in a 75 mM NaOH aqueous solution. The relation between peak current and analyte concentration was linear over about three orders of magnitude with detection limits (S/N = 3) ranging from 1 to 2 μM for all analytes. The proposed method has been successfully applied to monitor the mannitol and sugar contents in the plant samples at different growth stages with satisfactory assay results.  相似文献   

5.
Florescu M  A Brett CM 《Talanta》2005,65(2):306-312
Electrochemical glucose enzyme biosensors have been prepared on carbon film electrodes made from carbon film electrical resistors. Evaluation and characterisation of these electrodes in phosphate buffer saline solution has been carried out with and without pretreatment by cycling in perchloric acid or at fixed applied potential. Both pretreatments led to a reduction in the carbon surface oxidation peak and enabled better detection of hydrogen peroxide in the pH range of 5-7. Glucose oxidase enzyme was immobilised on the carbon surface by mixing with glutaraldehyde, bovine serum albumin and with and without Nafion. The performance of these two types of electrode was similar, that containing Nafion being more physically robust. Linear ranges were up to around 1.5 mM, with detection limits 60 μM, and pretreatment of the carbon film electrode at a fixed potential of +0.9 V versus SCE for 5 min was found to be the most beneficial. Michaelis-Menten constants between 5 mM and 10 mM were found under the different experimental conditions. Coating the immobilised enzyme layer with a thin layer of Nafion was found to give similar results in the determination of glucose to mixing it but with benefits against interferences for the analysis of complex matrices, such as wine. Potentialities, for a short-term-use or disposable sensors, are indicated.  相似文献   

6.
Fei Li 《Talanta》2009,79(3):845-31
A simple and rapid method for morphine detection has been described based on electrochemical pretreatment of glassy carbon electrode (GCE) which was treated by anodic oxidation at 1.75 V, following potential cycling in the potential range from 0 V to 1.0 V vs. Ag|AgCl reference electrode. The sensitivity for morphine detection was improved greatly and the detection limit was 0.2 μM. The reproducibility of the voltammetric measurements was usually less than 3% RSD for six replicate measurements. Moreover, this method could readily discriminate morphine from codeine. And an electrochemical detection of morphine in spiked urine sample was succeeded with satisfactory results.  相似文献   

7.
In this paper, we propose the use of an electroanalytical technique based on the direct oxidation or reduction of the electroactive components of the sample on the surface of the working electrode, called voltammetry of immobilised microparticles (VMPs). The sample is easily deposited on the electrode by abrasion and then the electrode is transferred to the electrochemical cell where the square wave potential scan is performed. Electroactive species showed peaks whose peak potential is related to the standard formal potentials. We applied this technique to the identification of iron oxides and hydroxy-oxides in cosmetics. To characterise and identify the iron(III) oxides and hydroxy-oxides VMP was performed in two different media: oxalic acid and hydrochloric acid, that is, a complexing and a slightly complexing media. Two electrode processes were observed. They were influenced by the media and the synthesis procedure of the oxides. The reduction peak at negative potentials (−0.50 V in hydrochloric acid and −0.60 V in oxalic acid) is related to the direct reduction of the iron(III) oxide and it does not appear in the case of the more reactive phases (hydroxy-oxides). The peak at positive potentials (0.90 V in hydrochloric acid and 0.60 V in oxalic acid) involves the reduction of iron(III) in solution. The same electrode process were observed for binary mixtures but the peak potentials are shifted from the pure components peak potentials. This allowed us to distinguish between their mixtures. Finally, VMP was used to characterise iron oxides in cosmetic powders.  相似文献   

8.
Capillary zone electrophoresis (CZE) was employed for the determination of vincristine using electrochemical detection with a carbon fiber microdisk bundle electrode at a constant potential of 1.0 V versus saturated calomel electrode (SCE). The optimum conditions of separation and detection are 1.7×10−2 Na2HPO4− 3.2×10−3 mol/l NaH2PO4 (pH 7.5) for the buffer solution, 20 kV for the separation voltage. The limit of detection is 5.0×10−7 mol/l or 2.2 fmol (S/N=3) for the injection voltage of 5 kV and the injection time of 10 s. The recovery of the method is between 95 and 101% for the vincristine taken by human erythrocytes. The method was applied to investigate uptake and accumulation behavior of vincristine for human erythrocytes. The advantages of the method are the small sample volume of CZE and the high selectivity and sensitivity of electrochemical detection.  相似文献   

9.
Dogan-Topal B  Ozkan SA 《Talanta》2011,83(3):780-788
The anticancer drug, leuprolide (LPR) bound to double-stranded fish sperm DNA (dsDNA) which was immobilized onto the surface of an anodically activated pencil graphite electrode (PGE), was employed for designing a sensitive biosensor. The interaction of leuprolide (LPR) with double-stranded DNA (dsDNA) immobilized onto pencil graphite electrode (PGE) have been studied by electrochemical methods. The mechanism of the interaction was investigated and confirmed by differential pulse voltammetry using two different interaction methods; at the PGE surface and in the solution phase. The decrease in the guanine oxidation peak current was used as an indicator for the interaction in acetate buffer at pH 4.80. The response was optimized with respect to accumulation time, potential, drug concentration, and reproducibility for both interaction methods. The linear response was obtained in the range of 0.20-6.00 ppm LPR concentration with a detection limit of 0.06 ppm on DNA modified PGE and between 0.20 and 1.00 ppm concentration range with detection limit of 0.04 ppm for interaction in solution phase method. LPR showed an irreversible oxidation behavior at all investigated pH values on a bare PGE. Differential pulse adsorptive stripping (AdSDPV) voltammetric method was developed for the determination of LPR. Under these conditions, the current showed a linear dependence with concentration within a range of 0.005-0.20 ppm with a detection limit of 0.0014 ppm. Each determination method was fully validated and applied for the analysis of LPR in its pharmaceutical dosage form.  相似文献   

10.
A sensitive method is described for the determination of trace bismuth based on the bismuth-bromopyrogallol red (BPR) adsorption at a carbon paste electrode (CPE). The overall analysis involved a three-step procedure: accumulation, reduction, and anodic stripping. Optimal conditions were found to be an electrode containing 25% paraffin oil and 75% high purity graphite powder, a 0.30 mol l−1 HCl solution containing 2.0×10−5 mol l−1 BPR as supporting medium; accumulation potential and time, −0.10 V, 3 min; reduction potential and time, −0.35 V, 60 s; scan rate 100 mV s−1; scan range from −0.35 to 0.15 V. It was found that the Bi(III)-BPR complex could be accumulated on the electrode surface during the accumulation period. Then the Bi(III) in the Bi(III)-BPR complex on the CPE surface was reduced to Bi(0) during reduction interval and finally reoxidized during the anodic stripping step for voltammetric quantification. Factors affecting the accumulation, reduction, and stripping steps were investigated. Interferences by other ions were studied as well. The detection limit was found to be 5×10−10 mol l−1 with a 3 min accumulation time. The linear range was from 1.0×10−9 to 5.0×10−7 mol l−1. Application of the procedure to the determination of bismuth in water and human hair samples gave good results.  相似文献   

11.
A FIA-amperometric method for azithromycin determination was developed. A working glassy carbon electrode and a Ag/AgCl/NaCl (3 M) reference electrode were used. The determination is based on the electrochemical oxidation of the azithromycin at 0.9 V in Britton-Robinson buffer solution (pH 8.0). Due to the adsorption of the reaction products on the electrode surface, an effective cleaner cycle was implemented. By using the optimum chemical and FIA conditions, a concentration linear range of 1.0-10.0 mg L−1 and a detection limit (LOD) of 0.76 mg L−1 are obtained. The method was validated and satisfactorily applied to the determination of azithromycin in pharmaceutical formulations.  相似文献   

12.
Capillary zone electrophoresis with electrochemical detection (ED) has been employed for the separation and determination of adenine (A), guanine (G), theophylline (Thp), hypoxanthine (HX), xanthine (Xan) and uric acid (UA). Effects of several important factors such as the acidity and concentration of running buffer, separation voltage, injection time and detection potential were investigated to acquire the optimum conditions. The detection electrode was a 300 μm carbon disc electrode at a working potential of +0.95 V (versus saturated calomel electrode (SCE)). The six purine bases can be well separated within 14 min in a 40 cm length fused-silica capillary at a separation voltage of 10 kV in a 100 mmol/l borate buffer (BB, pH 10.0). The current response was linear over about three orders of magnitude with detection limits (S/N=3) ranging from 0.157×10−6 to 0.767×10−6 mol/l for all compounds. The proposed method was successfully applied to determine Thp in tea and aminophylline tablets, UA in human urine, and two purine bases in DNA.  相似文献   

13.
Qijin Wan  Fen Yu  Lina Zhu  Xiaoxia Wang 《Talanta》2010,82(5):1820-1825
Femtomolar (fM) leveled lead ions were electrochemically detected using a bucky-gel coated glassy carbon electrode and differential pulse anodic stripping voltammetry. The bucky-gel was composed of dithizone, ionic liquid (1-butyl-3-methylimidazolium hexafluorophosphate), and multi-walled carbon nanotubes (MWCNTs). The fabrication of the bucky-gel coated electrode was optimized. The modified electrode was characterized with voltammetry, electrochemical impedance spectroscopy, and chronoamperometry. After the accumulation of lead ions into the bucky-gel modified electrode at −1.2 V vs. saturated calomel electrode (SCE) for 5 min in a pH 4.4 sodium acetate-acetate acid buffer solution, differential pulse anodic stripping voltammograms of the accumulated lead show an anodic wave at −0.58 V. The anodic peak current is detectable for lead ions in the concentration range from 1.0 μM down to 500 fM. The detection limit is calculated to be 100 fM. The proposed method was successfully applied for the detection of lead ions in lake water.  相似文献   

14.
In situ microwave activation has been applied to the electro-deposition and stripping of palladium metal (which is widely used as a catalyst) at cavitation resistant boron-doped diamond electrodes. Focused microwave radiation leading to heating, boiling, and cavitation is explored as an option to improve the speed and sensitivity of the analytical detection procedure. The deposition and anodic stripping of palladium by linear sweep voltammetry in 0.1 M KCl (pH 2) solution and at boron-doped diamond electrodes is shown to be strongly enhanced by microwave activation due to both (i) the increase in mass transport and (ii) the increase in the kinetic rate of deposition and stripping.The temperature at the electrode surface is calibrated with the reversible redox couple Fe(CN)64−/Fe(CN)63− and found to be reach 380 K. In the presence of microwave radiation, the potential of onset of the deposition of palladium is strongly shifted positive from −0.4 to +0.1 V versus SCE. The optimum potential for deposition in the presence of microwaves is −0.4 V versus SCE and the anodic stripping peak current is shown to increase linearly with deposition time. Under these conditions, the stripping peak current varies linearly with the palladium concentration down to ca. 2 μM. At concentration lower than this a logarithmic variation of the stripping peak current with concentration is observed down to ca. 0.1 μM (for 5 min pre-concentration in presence of microwave radiation).  相似文献   

15.
S. Ashok Kumar 《Talanta》2007,72(2):831-838
The adsorption processes and electrochemical behavior of 4-nitroaniline (4-NA) adsorbed onto glassy carbon electrodes (GCE) have been investigated in aqueous 0.1 M nitric acid (HNO3) electrolyte solutions using cyclic voltammetry (CV). 4-NA adsorbs onto GCE surfaces, and upon potential cycling past −0.2 V, is transformed into the arylhydroxylamine (ArHA) derivative which exhibits a well-behaved pH dependent redox couple centered at 0.32 V at pH 1.5. It is noted as arylhydroxylamine modified glassy carbon electrodes (HAGCE). This modified electrode can be readily used as an immobilization matrix to entrap proteins and enzymes. In our studies, myoglobin (Mb) was used as a model protein for investigation. A pair of well-defined reversible redox peaks of Mb (Fe(III)-Fe(II)) was obtained at the Mb/arylhydroxylamine modified glassy carbon electrode (Mb/HAGC) by direct electron transfer between the protein and the GCE. The formal potential (E0), the apparent coverage (Γ*) and the electron-transfer rate constant (ks) were calculated as −0.317 V, 8.26 × 10−12 mol/cm2 and 51 ± 5 s−1, respectively. Dramatically enhanced biocatalytic activity was exemplified at the Mb/HAGC electrode by the reduction of hydrogen peroxide (H2O2), trichloroacetic acid (TCA) and oxygen (O2). The Mb/arylhydroxylamine film was also characterized by UV-visible spectroscopy (UV-vis), scanning electron microscope (SEM) indicating excellent stability and good biocompatibility of the protein in the arylhydroxylamine modified electrode. This new Mb/HAGC electrode exhibited rapid electrochemical response (2 s) for H2O2 and had good stability in physiological condition, showing the potential applicability of the films in the preparation of third generation biosensors or bioreactors based on direct electrochemistry of the proteins.  相似文献   

16.
Poly(3,4-ethylenedioxythiophene-co-(5-amino-2-naphthalenesulfonic acid)) (PEDOT-PANS) film modified glassy carbon electrode was prepared by electrochemical polymerization technique. The properties of modified electrode was studied. It was found that the electrochemical properties of modified electrode was very much dependent on the experimental conditions, such as monomer oxidation potential and pH. The modified electrode surface was characterized by scanning electron microscopy (SEM). The PEDOT-PANS film modified electrode shows electrocatalytic activity toward oxidation of dopamine (DA) in acetate buffer solution (pH 5.0) and results in a marked enhancement of the current response. The linear sweep voltammetric (LSV) peak heights are linear with DA concentration from 2 × 10−6 to 1 × 10−5 M. The detection limit is 5 × 10−7 M. More over, the interferences of ascorbic acid (AA) and uric acid (UA) were effectively diminished. This work provides a simple and easy approach for selective determination of dopamine in the presence of ascorbic acid and uric acid.  相似文献   

17.
Multi-walled carbon nanotube decorated with silver nanoparticles (AgNPs-MWCNT) is used as an effective strategy for modification of the surface of pyrolytic graphite electrode (PGE). This modification procedure improved colloidal dispersion of the decorated MWCNTs in water, affording uniform and stable thin films for altering the surface properties of the working electrode. Robust electrode for sensing applications is obtained in a simple solvent evaporation process. The electrochemical behavior of sumatriptan (Sum) at the bare PGE and AgNPs-MWCNT modified PGE is investigated. The results indicate that the AgNPs-MWCNT modified PGE significantly enhanced the oxidation peak current of Sum. A remarkable enhancement in microscopic area of the electrode together with strong adsorption of Sum on the surface of the modified electrode resulted in a considerable increase in the peak current of Sum. Experimental parameters, such as scan rate, pH, accumulation conditions and amount of the modifier used on the PGE surface are optimized by monitoring the CV responses toward Sum. It is found that a maximum current response can be obtained at pH 7.4 after accumulation at open circuit for 150 s. Further experiments demonstrated that the oxidative peak currents increased linearly with Sum concentration in the range of 8.0 × 10−8-1.0 × 10−4 mol L−1 with a detection limit of 4.0 × 10−8 mol L−1. The modified electrode showed high sensitivity, selectivity, long-term stability and remarkable voltammetric reproducibility in response to Sum. These excellent properties make the prepared sensor suitable for the analysis in pharmaceutical and clinical preparations. The modified electrode was successfully applied for the accurate determination of trace amounts of Sum in pharmaceutical preparations.  相似文献   

18.
Electro membrane extraction (EME) as a new microextraction method was applied for extraction of sodium diclofenac (SDF) as an acidic compound from wastewater, urine, bovine milk and plasma samples. Under applied potential of 20 V during the extraction, SDF migrated from a 2.1 mL of sample solution (1 mM NaOH), through a supported liquid membrane (SLM), into a 30 μL acceptor solution (10 mM NaOH), exist inside the lumen of the hollow fiber. The negative electrode was placed in the donor solution, and the positive electrode was placed in the acceptor solution. 1-octanol was immobilized in the pores of a porous hollow fiber of polypropylene as SLM. Then the extract was analyzed by means of high-performance liquid chromatography (HPLC) with UV-detection for quantification of SDF. Best results were obtained using a phosphate running electrolyte (10 mM, pH 2.5). The ranges of quantitation for different samples were 8–500 ng mL−1. Intra- and inter-day RSDs were less than 14.5%. Under the optimized conditions, the preconcentration factors were between 31 and 66 and also the limit of detections (LODs) ranged from 2.7 ng mL−1 to 5 ng mL−1 in different samples. This procedure was applied to determine SDF in wastewater, bovine milk, urine and plasma samples (spiked and real samples). Extraction recoveries for different samples were between 44–95% after 5 min of extraction.  相似文献   

19.
Y. Yard?m  A. Levent  Z. ?entürk 《Talanta》2010,80(3):1347-381
7,12-Dimethylbenz[a]anthracene (DMBA), is a widely studied polycyclic aromatic hydrocarbon that has long been recognized as a very potent carcinogen. Initially, the electrochemical oxidation of DMBA at the glassy carbon and pencil graphite electrodes in non-aqueous media (dimethylsulphoxide with lithium perchlorate) was studied by cyclic voltammetry. DMBA was irreversibly oxidized in two steps at high positive potentials, resulting in the ill-resolved formation of a couple with a reduction and re-oxidation wave at much lower potentials. Special attention was given to the use of adsorptive stripping voltammetry together with a medium exchange procedure on disposable pencil graphite electrode in aqueous solutions over the pH range of 3.0-9.0. The response was characterized with respect to pH of the supporting electrolyte, pre-concentration time and accumulation potential. Using square-wave stripping mode, the compound yielded a well-defined voltammetric response in acetate buffer, pH 4.8 at +1.15 V (vs. Ag/AgCl) (a pre-concentration step being carried out at a fixed potential of +0.60 V for 360 s). The process could be used to determine DMBA concentrations in the range 2-10 nM, with an extremely low detection limit of 0.194 nM (49.7 ng L−1). The applicability to assay of spiked human urine samples was also illustrated. Finally, the interaction of DMBA with fish sperm double-stranded DNA based on decreasing of the oxidation signal of adenine base was studied electrochemically by using differential pulse voltammetry with a pencil graphite electrode at the surface and also in solution. The favorable signal-to-noise characteristics of biosensor resulted in low detection limit (ca. 46 nM) following a 300-s interaction. These results displayed that the electrochemical DNA-based biosensor could be used for the sensitive, rapid, simple and cost effective detection of DMBA-DNA interaction.  相似文献   

20.
A highly sensitive adsorptive stripping voltammetric protocol for measuring trace beryllium, in which the preconcentration is achieved by adsorption of the beryllium-arsenazo-I complex at a preplated mercury-coated carbon-fiber electrode, is described. Optimal conditions were found to be a 0.05 M ammonium buffer (pH 9.7) containing 5 μM arsenazo-I, an accumulation potential of 0.0 V (versus Ag/AgCl) and a square-wave voltammetric scan. The new procedure obviates the need for renewable mercury-drop electrodes used in early stripping protocols for beryllium. A linear response is observed over the 10-60 μg l−1 concentration range (90 s accumulation), along with a detection limit of 0.25 μg l−1 beryllium (10 min accumulation). A 15-s electrochemical cleaning enables the same mercury film to be used for a prolonged operation. High stability is thus indicated from the reproducible response of a 100 μg l−1 beryllium solution (n = 60; RSD = 3.3%) over a 2.5-h operation. Applicability to a seawater sample is illustrated. The attractive behavior of the new sensor holds great promise for on-site environmental and industrial monitoring of beryllium. Preliminary data in this direction using mercury-coated screen-printed electrodes are encouraging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号