首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Bortoleto GG  Cadore S 《Talanta》2005,67(1):169-174
A rapid and sensitive method for the on-line separation and pre-concentration of inorganic arsenic in water samples is described. The analyte in the pentavalent oxidation state is reduced to its trivalent form with l-cysteine and the total inorganic arsenic is sorbed onto activated alumina in the acid form in a mini-column coupled to a FI-HG AAS system. Afterwards, it is eluted with 3 mol l−1 HCl. An enrichment factor of 7 was obtained, allowing an analytical flow rate of about 28 determinations per hour. The limits of detection (3σ) and of quantification (10σ) were calculated as LOD = 0.15 μg l−1 of As and LOQ = 0.5 μg l−1 of As, respectively. Relative standard deviations (n = 10) less than 8% were obtained for different arsenic concentrations and the accuracy was verified by analysing certified reference materials. Different kinds of samples, such as mineral water, drinking water, river water and natural spring water were analyzed and good agreement was obtained with the values from spiked experiments.  相似文献   

2.
Hsiang MC  Sung YH  Huang SD 《Talanta》2004,62(4):791-799
A simple method was developed for the direct and simultaneous determination of arsenic (As), manganese (Mn), cobalt (Co), and nickel (Ni) in urine by a multi-element graphite furnace atomic absorption spectrometer (Perkin-Elmer SIMAA 6000) equipped with the transversely heated graphite atomizer and longitudinal Zeeman-effect background correction. Pd was used as the chemical modifier along with either the internal furnace gas or a internal furnace gas containing hydrogen and a double stage pyrolysis process. A standard reference material (SRM) of Seronorm™ Trace Elements in urine was used to confirm the accuracy of the method. The optimum conditions for the analysis of urine samples are pyrolysis at 1350 °C (using 5% H2 v/v in Ar as the inter furnace gas during the first pyrolysis stage and pure Ar during the second pyrolysis stage) and atomization at 2100 °C. The use of Ar and matrix-free standards resulted in concentrations for all the analytes within 85% (As) to 110% (Ni) of the certified values. The recovery for As was improved when mixture of 5% H2 and 95% Ar (v/v) internal furnace gas was applied during the first step of a two-stage pyrolysis at 1350 °C, and the found values of the analytes were within 91-110% of the certified value. The recoveries for real urine samples were in the range 88-95% for these four elements. The detection limits were 0.78 μg l−1 for As, 0.054 μg l−1 for Mn, 0.22 μg l−1 for Co, and 0.35 μg l−1 for Ni. The upper limits of the linear calibration curve are 60 μg l−1 (As); 12 μg l−1 (Mn); 12 μg l−1 (Co) and 25 μg l−1 (Ni), respectively. The relative standard deviations (R.S.D.s) for the analysis of SRM were 2% or less. The R.S.D.s of a real urine sample are 1.6% (As), 6.3% (Mn), 7.0% (Ni) and 8.0% (Co), respectively.  相似文献   

3.
Determination of inorganic oxyanions of As and Se by HPLC-ICPMS   总被引:1,自引:0,他引:1  
Sathrugnan K  Hirata S 《Talanta》2004,64(1):237-243
A liquid chromatographic separation of inorganic oxyanions of As (As(V) and As(III)) and Se (Se(VI) and Se(IV)) using mixed ion-pairing reagents followed by ICPMS detection is described. The separation was accomplished in less than 4 min on Capcell C18 RP column using mixed ion-pairing modifier containing 5 mM of butane sulfonic acid (BSA), 2 mM malonic acid, 0.30 mM hexane sulfonic acid (HSA) and 0.5% methanol of pH 2.5. All four species were resolved with retention times of 2.4, 2.6, 3.0, and 3.1 min for Se(VI), As(V), As(III), and Se(IV), respectively. The detection limits were less than 0.08 and 0.77 μg l−1 for arsenic and selenium species, respectively. The relative standard deviation of the proposed method for arsenic (at 2.5 μg l−1) and selenium (at 10 μg l−1) was less than 3.7 and 4.8%, respectively. The technique was used to determine inorganic oxyanions of As and Se in water samples (tap, well, and river) and extracts of coal fly ash and sediment. Low power microwave digestion was employed for extraction from fly ash and sediment samples.  相似文献   

4.
A simple and robust on-line sequential insertion system coupled with hydride generation atomic absorption spectrometry (HG-AAS) was developed, for selective As(III) and total inorganic arsenic determination without pre-reduction step. The proposed manifold, which is employing an integrated reaction chamber/gas-liquid separator (RC-GLS), is characterized by the ability of the successful managing of variable sample volumes (up to 25 ml), in order to achieve high sensitivity. Arsine is able to be selectively generated either from inorganic As(III) or from total arsenic, using different concentrations of HCl and NaBH4 solutions. For 8 ml sample volume consumption, the sampling frequency is 40 h−1. The detection limit is cL = 0.1 and 0.06 μg l−1 for As(III) and total arsenic, respectively. The precision (relative standard deviation) at 2.0 μg l−1 (n = 10) level is sr = 2.9 and 3.1% for As(III) and total arsenic, respectively. The performance of the proposed method was evaluated by analyzing the certified reference material NIST CRM 1643d and spiked water samples with various concentration ratios of As(III) to As(V). The method was applied for arsenic speciation in natural waters samples.  相似文献   

5.
《Analytica chimica acta》2002,455(1):149-157
A time-based multisyringe flow injection procedure with spectrofluorimetric detection is proposed in this paper for the determination of aluminium in drinking water. The flow methodology is based on the simultaneous or sequential injection of sample and chelating reagent (viz. 8-hydroxyquinoline-5-sulphonic acid) plugs using a multicommutation approach so that three successive injections may be performed with a sole displacement of the piston driver bar of the burette. Thus, an injection throughput as high as 154 h−1 is achieved by sampling a 182 μl sample zone. In order to enhance the luminescence, the reaction is carried out in micellar medium using hexadecyltrimethylammonium chloride as surfactant. The influence of geometric and hydrodynamic variables as well as several parameters such as multicommutation timing, ligand and surfactant concentration and reagent pH was assessed.Under the selected working conditions, a linear dynamic range from 10 to 500 μg l−1 Al(III), a 3σ detection limit of 0.5 μg l−1 and a coefficient of variation of 0.6% at the 30 μg l−1 level were obtained. The analytical features were compared with those reported in previous flow injection and sequential injection methods. The multisyringe technique was successfully applied to the determination of aluminium in drinking water at low mineralisation levels, validating the results by inductively coupled plasma atomic emission spectrometry.  相似文献   

6.
Sawula GM 《Talanta》2004,64(1):80-86
Microcolumns containing 8-hydroxyquinoline azo-immobilized on controlled pore glass were incorporated in a field sampler for on-site collection, isolation and preconcentration of trace metal ions in waters of the Okavango Delta, Botswana. Sequestered trace metal ions were recovered by elution with 0.5 ml of 1.5 M nitric acid, and determined by graphite furnace atomic absorption spectrometry (GFAAS). This sampling and enrichment method minimizes sample contamination, and collection of large volumes of water samples for transporting, over long distances, to analytical laboratories is avoided.Data reported comprise one of the initial surveys on trace metal ion concentrations in waters of the Okavango Delta, Botswana. In waters with more efficient mixing, dissolved metal ion concentrations found were generally low with slightly elevated levels of manganese (7-19 μg l−1), zinc (2.7-4.8 μg l−1), nickel (0.2-2.5 μg l−1) and copper (0.3-2.1 μg l−1). For each trace metal ion, concentration levels seem to reflect zones of varying water conveyance, and show no obvious temporal and spatial variations apart from a slight increment from the inlet in the upper Delta to the outlets in the lower Delta.  相似文献   

7.
Zhang L  Ishi D  Shitou K  Morita Y  Isozaki A 《Talanta》2005,68(2):336-342
A simple and rapid method for simultaneous determination of As, Se and Sb was studied by graphite furnace atomic absorption spectrometry (GFAAS). Titanium dioxide adsorbing As, Se and Sb was separated from sample solution (100 ml) with a membrane filtration (0.45 μm), and then prepared to be slurry (5.0 ml) by adding ultrapure water. The behavior and influence of titanium dioxide on determination of As, Se and Sb were investigated in this experiment. The optimal conditions of a furnace for these elements were chosen as follows: pyrolysis temperature was 150 °C, and atomization temperature was 2300 °C. The optimal conditions of adsorption for As, Se and Sb on titanium dioxide were listed: pH 2.0 in sample solution; 10 min of stirring time; and 20.0 mg titanium dioxide. The difference of the chemical valence of each element had no effect on the recovery of each element at the same optimal conditions. Limits of detection (3σ) for As, Se and Sb were found to be 0.21 μg l−1, 0.15 μg l−1 and 0.15 μg l−1, respectively, with enrichment rate of 20, when 20 μl of slurry was injected into a Zr-coating tube. The proposed method was applied to tap water and river water.  相似文献   

8.
Arsenic pollution of public water supplies has been reported in various regions of the world. Recently, some cancer patients are treated with arsenite (AsIII); most Japanese people consume seafoods containing large amounts of negligibly toxic arsenic compounds. Some of these arsenic species are metabolized, but some remain intact. For the determination of toxic AsIII, a simple, rapid and sensitive method has been developed using electrospray ionization mass spectrometry (ESI-MS). AsIII was reacted with a chelating agent, pyrrolidinedithiocarbamate (PDC, C4H8NCSS-) and tripyrrolidinedithiocarbamate-arsine, As(PDC)3, extracted with methyl isobutyl ketone (MIBK). A 1 μL aliquot of MIBK layer was directly injected into ESI-MS instrument without chromatographic separation, and was detected within 1 min. Arsenate (AsV) was reduced to AsIII with thiosulfate, and then the total inorganic As was quantified as AsIII. This method was validated for the analysis of urine samples. The limit of detection of As was 0.22 μg L−1 using 10 μL of sample solution, and it is far below the permissible limit of As in drinking water, 10 μg L−1, recommended by the WHO. Results were obtained in < 10 min with a linear calibration range of 1-100 μg L−1. Several organic arsenic compounds in urine did not interfere with AsIII detection, and the inorganic As in the reference materials SRM 2670a and 1643e were quantified after the reduction of AsV to AsIII.  相似文献   

9.
Capelo JL  Dos Reis CD  Maduro C  Mota A 《Talanta》2004,64(1):217-223
A new sample preparation procedure based on tandem (that is, different diameter probe sonicators used in the same sample treatment) focused ultrasound (TFU) for mercury separation, preconcentration and back-extraction in aqueous solution from human urine has been developed. The urine is first oxidized with KMnO4/HCl/focused ultrasound (6 mm probe). Secondly, the mercury is extracted and preconcentrated with dithizone and cyclohexane. Finally, the mercury is back-extracted and preconcentrated again with the aid of focused ultrasound (3 mm probe). The procedure allows determining mercury by electrothermal atomic absorption spectrometry with fast furnace analysis and calibration against aqueous standards. Matrix modification is provided by the chemicals used in the sample treatment. The procedure is accomplished with low sample volume (8.5 ml). Low volume and low concentration reagents are used. The sample treatment is rapid (less than 3 min per sample) and avoids the use of organic phase in the graphite furnace. The preconcentration factor used in this work was 14. The limit of detection and the limit of quantification in urine were, respectively, 0.27 and 0.9 μg l−1. The relative standard deviation of aqueous standards (n=10) was 4% for a concentration of 100 μg l−1 and 5% for a concentration of 400 μg l−1. Recoveries from spiked urine with inorganic mercury, methyl-mercury, phenyl-mercury and diphenyl-mercury ranged from 86 to 98%.  相似文献   

10.
Leal LO  Forteza R  Cerdà V 《Talanta》2006,69(2):500-508
In this study, a new technique by hydride generation-atomic fluorescence spectrometry (HG-AFS) for determination and speciation of inorganic arsenic using multisyringe flow injection analysis (MSFIA) is reported. The hydride (arsine) was generated by injecting precise known volumes of sample, a reducing sodium tetrahydroborate solution (0.2%), hydrochloric acid (6 M) and a pre-reducing solution (potassium iodide 10% and ascorbic acid 0.2%) to the system using a multisyringe burette coupled with one multi-port selection valve. This solution is used to pre-reduce As(V) to As(III), when the task is to speciate As(III) and As(V). As(V) is determined by the difference between total inorganic arsenic and As(III). The reagents are dispensed into a gas-liquid separation cell. An argon flow delivers the arsine into the flame of an atomic fluorescence spectrometer. A hydrogen flow has been used to support the flame. Nitrogen has been employed as a drier gas (Fig. 1).Several variables such as sample and reagents volumes, flow rates and reagent concentrations were investigated in detail. A linear calibration graph was obtained for arsenic determination between 0.1 and 3 μg l−1. The detection limit of the proposed technique (3σb/S) was 0.05 μg l−1. The relative standard deviation (R.S.D.) of As at 1 μg l−1 was 4.4 % (n = 15). A sample throughput of 10 samples per hour was achieved. This technique was validated by means of reference solid and water materials with good agreement with the certified values. Satisfactory results for speciation of As(III) and As(V) by means of the developed technique were obtained.  相似文献   

11.
The present work reports the development of a methodology for the direct determination of lead in high saline waters derived from petroleum exploration employing electrothermal atomic absorption spectrometry with permanent Ir-W and HF as modifiers. These waters, so-called produced waters, have complex composition containing several types of organic and inorganic substances. In order to attain best conditions (highest analytical signal besides lowest background) for the methodology studies about the effect of several variables and the convenient calibration strategy were performed. Also, the efficiency of other modification approaches was evaluated. At best conditions, pyrolysis and atomization temperature were 800 and 2200 °C, respectively, when the modifiers cited above were utilized. Obtained results indicate that, in this kind of sample, lead can be determined by standard addition method or employing external calibration with standard solutions prepared in 0.8 mol l−1 NaCl medium. In order to evaluate the accuracy of the procedure, a recovery test was performed with six spiked samples of produced waters. The detection limit, quantification limit and the relative standard deviation in 0.8 mol l−1 NaCl were also calculated and the values are 1.5 μg l−1, 5.0 μg l−1 and 5.0% (at 10 μg l−1 level), respectively.  相似文献   

12.
A flow-batch system was developed for the determination of Fe(III) in estuarine waters with high variability in salinity. The method is based on the catalytic effect of iron(III) on the oxidation rate of N,N-dimethyl-p-phenylenediammonium dichloride (DmPD) by hydrogen peroxide and the formed product is spectrophotometrically monitored at 554 nm. A controlled addition of sodium chloride to every assayed sample is accomplished for in-line individual salinity matching.The proposed system processes about 30 samples h−1 and yields reproducible results. Relative standard deviations were estimated as <1.5% after 10 injections of typical samples (10.0-50.0 μg l−1 Fe; ca. 0.5 mol l−1 Cl). Synthetic samples (15.0 μg l−1 Fe; 0.25-1.0 mol l−1 NaCl) were efficiently processed, and no significant differences in results were found at a probability level of 99.7%. The method works for the full range of salinities. Only 120 μg DmPD are consumed per determination. The analytical curve is linear up to about 60 μg l−1 Fe (r>0.999; n=5) and the detection limit is 5 μg l−1 Fe. Results are in agreement with graphite furnace atomic absorption spectrometry.  相似文献   

13.
An automated system to perform liquid-liquid extraction is proposed, in which the effective mixture (the intimate contact) between the aqueous phase and the organic phase, as well as the separation of the phases, are carried out in a micro-batch glass extraction chamber. Sample, reagents and organic solvent are introduced into the glass extraction chamber by a peristaltic pump using air as carrier. The detection of the extracted species from the aqueous phase is made in a small volume (120-150 μl) of isobutyl methyl ketone (MIBK). The system allows enrichment factors of 2-10-fold. The proposed automatic system was evaluated for Cu(II) extraction based on complex formation between copper(II) and 1-(2′-pyridylazo)naphthol (PAN) in MIBK. When a volumetric ration of 2:1 (aqueous:organic) was implemented, copper was detected in the concentration range of 100-1600 μg l−1 (r = 0.9995) with a relative standard deviation of 2% (200 μg l−1, n = 5) and a detection limit of 20 μg l−1. The analytical curve was linear over the concentration range 25-500 μg l−1 (r = 0.9994) when a volumetric ratio of 10:1 was employed. With this ratio, the detection limit was 5.0 μg l−1 and the relative standard deviation was 6% (50 μg l−1, n = 5).  相似文献   

14.
Jitmanee K  Oshima M  Motomizu S 《Talanta》2005,66(3):529-533
A novel and simple flow-based method was developed for the simultaneous determination of As(III) and As(V) in freshwater samples. Two miniature columns with a solid phase anion exchange resin, placed on two 6-way valves were utilized for the solid-phase collection/concentration of arsenic(III) and arsenic(V), respectively. As(III) could be retained on the column after its oxidation to As(V) species with an oxidizing agent. The collected analytes were then sequentially eluted by 2 M nitric acid and introduced into ICP-AES. Potassium permanganate was examined as potential oxidizing agent for conversion of As(III) to As(V). The standard deviation of the analytical signals (peak height) for the replicate analysis (n = 5) of 0.5 μg l−1 solution were 3 and 5% for As(III) and As(V), respectively. The limit of detection (3σ) for both As(III) and As(V) were 0.1 μg l−1. The proposed system produced satisfactory results on the application to the direct analysis of inorganic arsenic species in freshwater samples.  相似文献   

15.
《Analytica chimica acta》2004,501(2):193-203
According to the committee decision of 12 August 2002 (2002/657/EC) the capability of detection, CCβ, must be set in all analytical methods not only at concentration levels close to zero but also at the maximum permitted limit (PL). In this work we describe a methodology which evaluates the capability of detection of a fluorescence technique with soft calibration models (bilinear and trilinear PLS) to determine tetracyclines (group B1 substances from annex 1 of Directive 96/23/EC). Its estimation is based on the generalisation of the procedure described in International Union of Pure and Applied Chemistry and in the ISO standard 11843 for univariate signals which evaluates the probabilities of false positive (α) and false negative (β). The capability of detection, CCβ, estimated from the second-order signal and the trilinear PLS model is 9.93 μg l−1 of tetracycline, 17.75 μg l−1 of oxytetracycline and 26.31 μg l−1 of chlortetracycline, setting α and β at 0.05. The capability of detection, CCβ, determined around the PL (100 μg kg−1 in milk and muscle) with the second-order signal is 109.4 μg l−1 of tetracycline, 117.0 μg l−1 of oxytetracycline and 124.9 μg l−1 of chlortetracycline, setting α and β at 0.05. The results were compared with those obtained with zero and first-order signals. The effect of the interferences on the capability of detection was also analysed as well as the number of standards used to build the models and their calibration range.When a tetracycline is quantified in presence of uncalibrated ones by means of the trilinear PLS model the errors oscillate between 14.70% for TC and 9.57% for OTC.  相似文献   

16.
An on-line flow injection (FI) preconcentration-electrothermal atomic absorption spectrometry (ETAAS) method is developed for trace determination of chromium in drinking water samples by sorption on a conical minicolumn packed with activated carbon (AC) at pH 5.0. The chromium was removed from the minicolumn with 1.0% (v/v) nitric acid. An enrichment factor (EF) of 35-fold for a sample volume of 10 ml was obtained. The detection limit (DL) value for the preconcentration method proposed was 3.0 ng l−1. The precision for 10 replicate determinations at the 0.5 μg l−1 Cr level was 4.0% relative standard deviation (R.S.D.), calculate with the peak heights obtained. The calibration graph using the preconcentration system for chromium was linear with a correlation coefficient of 0.9992 at levels near the detection limits up to at least 50 μg l−1. The method was successfully applied to the determination of Cr(III) and Cr(VI) in drinking water samples.  相似文献   

17.
An improved competitive indirect immunoassay for the detection of 2,4,6-trichlorophenol (2,4,6-TCP) has been developed and optimized by preparing heterologous haptens that have been evaluated as coating antigens. The relation between the degree of heterology and immunoassay detectability has been investigated according to the geometric and electronic distribution similarities between the haptens and the analyte using molecular modeling tools. The assay has been characterized according to different physicochemical parameters such as the incubation time, the ionic strength, the effect of detergents and the pH. The resulting assay has an IC50 of 1.44 μg l−1 and a limit of detection (LOD) of 0.2 μg l−1 and it shows a good accuracy and suitability to analyze trichlorophenol in drinking water.  相似文献   

18.
The present work reports the development of a methodology for the direct determination of vanadium in high saline waters derived from offshore petroleum exploration employing electrothermal atomic absorption spectrometry. Such waters, usually called produced waters, present complex composition containing various organic and inorganic substances. In order to attain best conditions (highest sensitivity besides lowest background) for the methodology, studies about the effects of several variables (evaluation of pyrolysis and atomization temperatures, type of chemical modifier, concentration of modifier and pyrolysis time) and the convenient calibration strategy were performed. Best conditions were reached with the addition of 10 μg of NH4H2PO4 as chemical modifier employing pyrolysis (during 10 s) and atomization temperatures of 1500 and 2700 °C, respectively. Obtained results indicated that, in this kind of sample, vanadium can be determined by standard addition method or employing an external calibration approach with standard solutions prepared in 0.8 mol l−1 NaCl medium. In order to evaluate possible matrix interferences, a recovery test was performed with five spiked samples of produced waters. The limit of detection, limit of quantification and relative standard deviation in 0.8 mol l−1 NaCl medium were also calculated and the derived values were 1.9 μg l−1, 6.3 μg l−1 and 5.6% (at 10 μg l−1 level), respectively.  相似文献   

19.
Ochratoxin A (OTA) is a mycotoxin (potentially carcinogenic secondary metabolite derived from fungal contamination), produced by some Aspergillus and Penicillium strains. Although present and legislated in different food sources in the human diet, the regulation for wine intake is still under discussion. The Office International de la Vigne et du Vin (OIV) recommended maximum levels in wine of 2 μg l−1. Some reports refer to OTA contamination in wines up to 15 μg l−1 and a special incidence in red wines from the southern regions of Europe and the north of Africa, but the majority of the data available are below 1 μg l−1. When working at such low concentrations, the problem of the uncertainty of the results becomes decisive towards the implementation of legal limits. In order to assess the global uncertainty associated with OTA determination in wines and widen the data set and knowledge of the situation in Portugal, 340 wines were analysed (189 Port Wine, 85 Vinho Verde and 66 wines from other regions in the country) by a high performance liquid chromatography (HPLC)-fluorescence detection (FD) method using immunoaffinity columns for clean up. OTA was detected in 69 wines by the method used, but in concentrations below 0.5 μg l−1, except for two which showed levels up to a maximum of 2.1 μg l−1. However, the global uncertainty for OTA is close to 37% for concentrations above 0.5 μg l−1, and therefore, such value can be below or exceed the OIV limit. In the vicinity of the limit of detection, 0.084 μg l−1, the global uncertainty rises exponentially to a maximum of about 70%. This can be an obstacle when discussing safety intake limits. Ethanol and glucose content did not interfere in the clean up of OTA by immunoaffinity columns.  相似文献   

20.
This paper reports the development of a new strategy for low-level determination of copper in water samples by using a flow-injection system coupled to solid-phase extraction (SPE) using flame atomic absorption spectrometry (F AAS) as detector. In order to preconcentrate copper from samples, a minicolumn packed with a styrene-divinylbenzene resin functionalized with (S)-2-[hydroxy-bis-(4-vinyl-phenyl)-methyl]-pyrrolidine-1-carboxylic acid ethyl ester was used and the synthesis procedure is described. System operation is based on the on-line retention of Cu(II) ions at pH 9.0 ± 0.2 in a such minicolumn with posterior analyte elution with 2 mol l−1 HCl directly to the F AAS nebulizer. The influence of several chemical (sample pH, buffer concentration, HCl eluent concentration and effect of the ionic strength) and flow (sample and eluent flow rates and preconcentration time) variables that could affect the performance of this system were investigated as well as the possible interferents. At optimized conditions, for 2 min of preconcentration time (13.2 ml of sample volume), the system achieved a detection limit of 1.1 μg l−1, a R.S.D. 1% at 20 μg g l−1 and an analytical throughput of 25 h−1, whereas for 4 min of preconcentration time (26.4 ml of sample volume), a detection limit of 0.93 μg l−1, a R.S.D. 5.3% at 5 μg l−1 and a sampling frequency of 13 h−1 were reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号