首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Binding constants between the antibiotic ristocetin A (Rist A) and D-Ala-D-Ala terminus peptides were determined using affinity capillary electrophoresis (ACE). In these experiments two techniques are used to obtain binding constants. In the first, a plug of Rist A and non-interacting standards are injected and electrophoresed. Analysis of the change in the relative migration time ratio (RMTR) of Rist, relative to the non-interacting standards, as a function of the concentration of peptide, yields a value for the binding constant (Kb). In the second, samples of peptide and standards are injected and electrophoresed in increasing concentrations of Rist A in the running buffer. Analysis using theRMTR yields aK b. The findings described here demonstrate the advantage of using ACE for estimating binding parameters between antibiotics and ligands.  相似文献   

2.
Multiple-injection affinity capillary electrophoresis (MIACE) was used to determine binding constants (K(b)) between vancomycin, ristocetin, and teicoplanin from Streptomyces orientalis, Nocardia lurida, and Actinoplanes teichomyceticus, respectively, and fluorenylmethoxycarbonyl (Fmoc)-(Gly, Ala, Val, and Phe)-D-Ala-D-Ala peptides. In this technique, separate plugs of sample containing non-interacting standards, peptide one, buffer, and peptide two, were injected into the capillary column and electrophoresed. Peptides migrate through the column at similar electrophoretic mobilities but remain as distinct zones due to the buffer plug between peptides. The electrophoresis is then carried out in an increasing concentration of antibiotic in the running buffer. Continued electrophoresis results in a shift in the migration time of the peptides upon binding to the antibiotic. Analysis of the change in the relative migration time ratio (RMTR) of the resultant complexes relative to the non-interacting standards, as a function of the concentration of antibiotic yields a value for K(b). MIACE is a versatile technique that can be used to measure affinity constants between ligands of similar relative molecular mass and charge without the need of separate binding experiments. The findings described, herein, demonstrate the advantages of using MIACE to estimate binding parameters between ligands and receptors.  相似文献   

3.
Binding constants of the glycopeptide antibiotics teicoplanin (Teic), ristocetin (Rist), and vancomycin (Van), and their derivatives to D-Ala-D-Ala terminus peptides were determined by on-column ligand and receptor synthesis coupled to affinity capillary electrophoresis (ACE) or partial filling ACE (PFACE). In the first technique, 9-fluorenylmethoxycarbonyl (Fmoc)-amino acid-D-Ala-D-Ala species are first synthesized using on-column techniques. The initial sample plug contains a D-Ala-D-Ala terminus peptide and two non-interacting standards. Plugs two and three contain solutions of Fmoc-amino acid-N-hydroxysuccinimide (NHS) ester and buffer, respectively. Upon electrophoresis, the initial D-Ala-D-Ala peptide reacts with the Fmoc-amino acid NHS ester yielding the Fmoc-amino acid D-Ala-D-Ala peptide. Continued electrophoresis results in the overlap of the glycopeptide in the running buffer and the plug of Fmoc-amino acid-D-Ala-D-Ala peptide and non-interacting markers. Subsequent analysis of the change in the electrophoretic mobility (mu) or relative migration time ratio (RMTR) of the peptide relative to the non-interacting standards, as a function of the concentration of the antibiotic, yields a value for the binding constant. In the second technique, derivatives of the glycopeptides Teic and Rist are first synthesized on-column before analysis by ACE or PFACE. After the column has been partially filled with increasing concentrations of D-Ala-D-Ala terminus peptides, a plug of buffer followed by two separate plugs of reagents are injected. The order of the reagent plugs containing the antibiotic and two non-interacting standards and the anhydride varies with the charge of the glycopeptide. Upon electrophoresis, the antibiotic reacts with the anhydride yielding a derivative of Teic or Rist. Continued electrophoresis results in the overlap of the derivatized antibiotic and the plug of D-Ala-D-Ala peptide. Analysis of the change in RMTR of the new glycopeptide relative to the non-interacting standards, as a function of the concentration of the D-Ala-D-Ala ligand yields a value for the binding constant.  相似文献   

4.
This paper describes a two-step procedure whereby on-column ligand synthesis and partial-filling affinity capillary electrophoresis (PFACE) are sequentially coupled to each other to determine the binding constants of 9-fluorenylmethoxy carbonyl (Fmoc)-amino acid-D-Ala-D-Ala species to vancomycin (Van) from Streptomyces orientalis. In this technique four separate plugs of sample are injected onto the capillary column and electrophoresed. The initial sample plug contains a D-Ala-D-Ala terminus peptide and two non-interacting standards. Plugs two and three contain solutions of Fmoc-amino acid-N-hydroxysuccinimide (NHS) ester and running buffer, respectively. The fourth sample plug contains an increasing concentration of Van partially-filled onto the capillary column. Upon electrophoresis the initial D-Ala-D-Ala peptide reacts with the Fmoc-amino acid NHS ester yielding the Fmoc-amino acid D-Ala-D-Ala peptide. Continued electrophoresis results in the overlap of the plugs of Van and Fmoc-amino acid-D-Ala-D-Ala peptide and non-interacting markers. Analysis of the change in the relative migration time ratio of the Fmoc-amino acid-D-Ala-D-Ala peptide relative to the non-interacting standards, as a function of the concentration of Van, yields a value for the binding constant. These values agree well with those estimated using other binding and ACE techniques.  相似文献   

5.
Binding constants between the glycopeptides teicoplanin (Teic) and ristocetin (Rist) and their derivatives to D-Ala-D-Ala terminus peptides were determined by on-column receptor synthesis coupled to partial-filling affinity capillary electrophoresis (PFACE) or affinity capillary electrophoresis (ACE). In these techniques, the column is first partially filled with increasing concentrations of D-Ala-D-Ala terminus peptides. This is followed by plugs of buffer, antibiotic and two noninteracting standards, and acetic and/or succinic anhydride (and buffer in the case of ACE). The order of the reagent plugs containing the antibiotic and anhydride varies with the charge of the glycopeptide. Upon electrophoresis, the antibiotic reacts with the anhydride yielding a derivative of Teic or Rist. Continued electrophoresis results in the overlap of the derivatized antibiotic and the plug of D-Ala-D-Ala peptide. Analysis of the change in the relative migration time ratio (RMTR) of the new glycopeptide relative to the standards, as a function of the concentration of the D-Ala-D-Ala ligand yields a value for the binding constant K(b). The techniques described here can be used to assess how the derivatization of drugs alters their affinities for target molecules.  相似文献   

6.
This work demonstrates the use of multiple-step ligand injection affinity capillary electrophoresis (ACE) using two model systems: vancomycin from Streptomyces orientalis and carbonic anhydrase B (CAB, EC 4.2.1.1). In this technique a sample plug of receptor and non-interacting standards is injected by pressure and electrophoresed in a buffer containing a given concentration of ligand. The sequence is repeated for all concentrations of ligand generating a single electropherogram containing a series of individual sample plugs superimposed on environments of buffer containing increasing concentrations of ligand. Analysis of the change in the relative migration time ratio, RMTR, relative to the non-interacting standards, as a function of the concentration of the ligand, yields a value for the binding constant. A competitive assay using the technique is also demonstrated using neutral ligands for CAB. These values agree well with those estimated using other binding and ACE techniques. Data demonstrating the quantitative potential of this method are presented.  相似文献   

7.
This work utilizes on-column ligand synthesis and affinity capillary electrophoresis (ACE) to determine binding constants (Kb) of 9-flourenylmethyloxy carbonyl (Fmoc)-amino acid derivatives to the glycopeptide antibiotics ristocetin (Rist) and teicoplanin (Teic). In this technique, two separate plugs of sample are injected on to the capillary column and electrophoresed. The initial sample plug contains a d-Ala-d-Ala terminus peptide and either one or two non-interacting standard(s). The second plug contains a Fmoc-amino acid-N-hydroxysuccinimide (NHS) ester. The electrophoresis is then carried out with an increasing concentration of Rist or Teic in the running buffer. Upon electrophoresis the initial d-Ala-d-Ala peptide reacts with the Fmoc-amino acid yielding a new Fmoc-amino acid-d-Ala-d-Ala peptide derivative. Continued electrophoresis results in the binding of Rist or Teic to the Fmoc-amino acid-d-Ala-d-Ala peptide derivatives. Analysis of the change in the relative migration time ratio (RMTR) or electrophoretic mobility () of the Fmoc-amino acid-d-Ala-d-Ala peptide derivatives relative to the non-interacting standards, as a function of the concentration of Rist and Teic, yields a value for Kb. These findings demonstrate the advantage of coupling on-column ligand synthesis to ACE for estimating binding parameters between antibiotics and ligands.Abbreviations Rist Ristocetin - Teic Teicoplanin - ACE Affinity capillary electrophoresis - RMTR Relative migration time ratio  相似文献   

8.
Multiple-injection affinity capillary electrophoresis (MIACE) is used to determine binding constants (K b) between receptors and ligands using as model systems vancomycin and teicoplanin from Streptomyces orientalis and Actinoplanes teichomyceticus, respectively, and their binding to D-Ala-D-Ala peptides and carbonic anhydrase B (CAB. EC 4.2.1.1) and the binding of the latter to arylsulfonamides. A sample plug containing a non-interacting standard is first injected followed by multiple plugs of sample containing the receptor and then a final injection of sample containing a second standard. Between each injection of sample, a small plug of buffer is injected which contains an increasing concentration of ligand to effect separation between the multiple injections of sample. Electrophoresis is then carried out in an increasing concentration of ligand in the running buffer. Continued electrophoresis results in a shift in the migration time of the receptor in the sample plugs upon binding to their respective ligand. Analysis of the change in the relative migration time ratio (RMTR) or electrophoretic mobility (μ) of the resultant receptor–ligand complex relative to the non-interacting standards, as a function of the concentration of ligand yields a value for K b. The MIACE technique is a modification in the ACE method that allows for the estimation of binding affinities between biological interactions on a timescale faster than that found for standard ACE. In addition sample volume requirements for the technique are reduced compared to traditional ACE assays. These findings demonstrate the advantage of using MIACE to estimate binding parameters between receptors and ligands.  相似文献   

9.
This work details the determination of the minimal injection time of ligand required in flow-through partial-filling affinity capillary electrophoresis (FTPFACE) to estimate binding constants of ligands to receptors. Two model systems are examined in this study: carbonic anhydrase B (CAB, EC 4.2.1.1) and arylsulfonamides, and vancomycin from Streptomyces orientalis and d-Ala-d-Ala peptides. Using CAB, a minimal injection time of 0.07 min at high pressure was determined that provided for the accurate and reproducible measurement of binding constants. In the FTPFACE technique, the capillary is first partially filled with a zone of ligand followed by a sample plug containing receptor and non-interacting standards. Upon application of a voltage the receptor and standards flow into the zone of ligand where a dynamic equilibrium is achieved between receptor and ligand. Continued electrophoresis results in the receptor and standards flowing through the domain of the ligand plug prior to detection. Analysis of the change in the relative migration time ratio (RMTR) of the receptor, relative to the non-interacting standards, as a function of the concentration of ligand, yields a value for the binding constant. In the present study, variable injection times of 4-carboxybenzenesulfonamide (CBSA) were examined to determine the minimal injection time needed to establish an equilibrium between CAB and ligand. A mathematical relationship was derived that correlated injection time and ligand concentration to the change in RMTR and comparisons made between the experimental and calculated values. Binding constants were obtained for a series of arylsulfonamide ligands and d-Ala-d-Ala terminus peptides to CAB and Van, respectively. The results support the use of FTPFACE to estimate affinity constants under variable experimental conditions.  相似文献   

10.
Vancomycin (Van) from Streptomyces orientalis has been derivatized with polyethylene glycol [PEG; PEG-550 (1), 750 (2), 1,100 (3), 2,000 (4), 5,000 (5), and 8,000 (6) g mol−1] at the N-terminus of the glycopeptide backbone and their binding to d-Ala-d-Ala terminus peptides assessed using affinity capillary electrophoresis (ACE). Utilizing ACE, a plug of Van-PEG and non-interacting standards are injected and electrophoresed. Analysis of the change in the relative migration time ratio of the Van-PEG species, relative to the non-interacting standards, as a function of the concentration of peptide, yields a value for the binding constant (K b). Values of K b for N-acetyl-d-Ala-d-Ala, 7 to the Van-PEG derivatives are weaker than those for N α,N ε-diacetyl-Lys-d-Ala-d-Ala, 8 (for example, values of K b for 7-1 and 8-1 are 1.8 and 47.7 × 103 M−1, respectively). These results demonstrate that derivatization of Van with PEG has little effect on the affinity of d-Ala-d-Ala peptide ligands to it. The findings further prove the versatility of ACE and its ability to estimate binding parameters of ligands to antibiotics.  相似文献   

11.
This work describes the use of a dual-standard analysis approach termed the time-average ratio (TAR) in affinity capillary electrophoresis (ACE) to estimate binding constants of receptors to ligands. In this form of analysis the TAR is the migration time of the receptor divided by the average of the sum of the migration times of two non-interacting standards. This change in TAR as a function of the concentration of ligand yields a value for the binding constant. This concept is demonstrated using three model systems: carbonic anhydrase B (CAB, EC 4.2.1.1) and arylsulfonamides, vancomycin (Van) and ristocetin (Rist) from Streptomyces orientalis and Nocardia lurida, respectively, and d-Ala- d-Ala terminus peptides. Three ACE techniques are used to examine the three systems: standard ACE, flow-through partial-filling ACE (FTPFACE), and on-column derivatization coupled to ACE. The findings described here demonstrate that ACE data analyzed using the TAR form of analysis yield binding constants between receptors and ligands comparable to those estimated using other ACE forms of analysis. A comparison to three other forms of analysis is described.  相似文献   

12.
Run-to-run sample separation reproducibility has been compared on two commercial high performance capillary electrophoresis units which differ in the mode by which the capillary temperature is thermostatted. Three standard analytes, differing dramatically in molecular character and size, were used for the analysis: benzoic acid, a 14 amino acid peptide from human chorionic gonadotropin, and ribonuclease A represent, respectively, small stable organic molecules, small peptides with little or no secondary structure, and proteins with secondary structure. These standards were evaluated with regard to reproducibility of migration time, peak area, and peak height. The analyses, performed in buffers of optimum pH for the separations, demonstrated that the liquid and forced air convection thermostatted systems both performed extremely well. The reproducibility, as judged by the percent coefficient of variance (% CV) of replicate analyses, was generally found to be less than 1 % (migration time); the reproducibility decreased in the order migration time > peak height > peak area. Whereas the absolute % CV values for MTrel (migration relative to a standard) observed with the liquid thermostatted system were 2- to 4-fold lower than those observed with the forced air convection thermostatted system, there was little statistically significant difference between the two. As expected, the data indicated a reduction in reproducibility as the complexity of the analyte increased, perhaps as the result of an increased potential for wall interactions. Comparing separations in which low (≈?1 watt/meter [W/m] of capillary) and high (>5 W/m) Joule heat was generated by altering the sodium chloride content of the buffer revealed few statistically significant differences in the reproducibility obtained from the two systems. With these particular standard analytes and their respective buffer systems, there appears to be little difference between forced air convection and liquid thermostatting of the capillary.  相似文献   

13.
This work evaluates the concept of a partial-filling technique in affinity capillary electrophoresis (ACE) using two model systems: vancomycin from Streptomyces orientalis and carbonic anhydrase B (CAB, EC 4.2.1.1). In this technique the capillary is first partially-filled with ligand followed by a sample of receptor and non-interacting standard and electrophoresed. Analysis of the change in the mobility ratio, M, of the receptor, relative to the non-interacting standard, as a function of the concentration of the ligand, yields a value for the binding constant. These values agree well with those estimated using other binding and ACE techniques. Data demonstrating the quantitative potential of this method is presented.  相似文献   

14.
Partial-filling affinity capillary electrophoresis (PFACE) is used to examine the binding interactions between two model biological systems: D-Ala-D-Ala terminus peptides to the glycopeptide antibiotic vancomycin (Van) from Streptomyces orientalis, and arylsulfonamides to carbonic anhydrase B (CAB, EC 4.2.1.1, bovine erythrocytes). Using these two systems, modifications in the PFACE technique are demonstrated including flow-through PFACE (FTPFACE), competitive flow-through PFACE (CFTPFACE), on-column ligand synthesis PFACE (OCLSPFACE), and multiple-step ligand injection PFACE (MSLIPFACE). In PFACE small plugs of sample are injected into the capillary column and an equilibrium is established between receptor and ligand during electrophoresis. Binding constants are then obtained by Scatchard analysis using changes in the migration time of the receptor/ligand on changing the concentration of the ligand/receptor. Data demonstrating the quantitative potential of these methods are presented. This review focuses on the unique capabilities of the different PFACE techniques as applied to two model biological systems.  相似文献   

15.
Four novel alanine-based indolicidin peptide derivatives were designed containing one WPW motif and two alanine residues, resulting in peptides of similar sequence. The separation of these peptides with identical physicochemical properties including molar mass, charge, and secondary structure as characterized by circular dichroism spectroscopy is very difficult; and the separation of peptides with differing physicochemical properties has only previously been reported. Capillary electrophoresis parameters such as separation buffer concentration, separation buffer pH, capillary length, and separation voltage were investigated to optimize the analysis. Using optimized conditions of a background electrolyte containing 5 mM formic acid of pH 2.0, total capillary length of 51 cm and a voltage of 10 kV enabled a baseline separation of the four peptides. The relative standard deviation of the peak areas and migration times for method repeatability (n = 3) were found to be lower than 8% and 3%, respectively. In addition, reasoning for the separation of these peptides is proposed based on the acidity of the formic acid buffer and the hydrophobic grouping of the tryptophan residues in the peptide primary sequence.  相似文献   

16.
This article reports the results of a study carried out to evaluate the offline hyphenation of capillary zone electrophoresis with matrix-assisted lased desorption ionization time of flight mass spectrometry (MALDI-TOF-MS) for the analysis of low-abundant complex samples, represented by the tryptic phosphorylated peptides of phosphoproteins, such as α-casein, β-casein, and fetuin. The proposed method employs a latex-coated capillary and consists in the online preconcentration of the tryptic peptides by a pH-mediated stacking method, their separation by capillary zone electrophoresis, and subsequent deposition of the separated analytes onto a MALDI target for their MS analysis. The online preconcentration method allows loading a large sample volume (~150?nL), which is introduced into the capillary after the hydrodynamic injection of a short plug of 1.0?M ammonium hydroxide solution and is sandwiched between two plugs of the acidic background electrolyte solution (BGE) filling the capillary. The sample spotting of the separated analytes onto the MALDI target is performed either during or postseparation using an automatic spotting device connected to the exit of the separation capillary. The proposed method allows the separation and identification of multiphosphorylated peptides from other peptides and enables their identification at femtomole level with improved efficiency compared with LC approaches hyphenated to MS.  相似文献   

17.
Zhang Y  Gomez FA 《Electrophoresis》2000,21(15):3305-3310
This work demonstrates the use of an in-capillary procedure for derivatization of amino acids, peptides, and alkylamines by anhydrides using capillary electrophoresis (CE). Migrating in an uncoated fused-silica capillary, plugs of substrate and anhydride are injected separately and electrophoresed. Differential transport velocities permit the separate zones to penetrate each other under an applied field, thereby facilitating reaction. In initial experiments the extent of reaction between tryptophan and acetic anhydride was examined and product amounts quantitated by CE. In separate experiments a series of amino acids and peptides were injected into the capillary and reacted with phthalic anhydride on-column to yield the phthalic derivatized species. Finally, on-column derivatization of alkylamines with phthalic anhydride was investigated and electrophoretic mobility related to molecular weight of the derivatized amines. These procedures illustrate the use of the capillary as a microreactor in the facile synthesis of derivatized molecules and ease of quantitation of reaction products under conditions of electrophoresis.  相似文献   

18.
Brown A  Morales C  Gomez FA 《Talanta》2008,74(4):605-612
In this paper, we describe the development of a microfluidic/capillary electrophoresis (CE) technique employing partial filling affinity capillary electrophoresis (PFACE) to estimate binding constants of ligands to receptors using as model systems carbonic anhydrase B (CAB, EC 4.2.1.1) and vancomycin from Streptomyces orientalis. Using multilayer soft lithography (MSL), a microfluidic device (MD) consisting of fluid and control channels is fabricated and fitted with an external capillary column. Multiple flow channels allows for manipulation of a zone of ligand and sample containing receptor and non-interacting standards into the MD and subsequently into the capillary column. Upon electrophoresis the sample components migrate into the zone of ligand where equilibrium is established. Changes in migration time of the receptor are used in the analysis to obtain a value for the binding interaction. The manipulation of small volumes of solution on the MD minimizes the need of time-consuming pipetting steps.  相似文献   

19.
A new approach for simultaneous chiral and achiral separations by capillary zone electrophoresis is described. Two adjacent selector plugs, consisting of Tween 20 as an achiral and methyl-beta-cyclodextrin (CD) as a chiral selector, are employed and four related local anesthetics are used as model compounds. The principles of the partial filling technique, whereby the capillary is filled with the chiral selector solution followed by the micellar solution at different plug lengths and concentrations, prior to application of the solutes, was employed. During the run both capillary ends were dipped in a simple buffer, i.e., one without additives. The two separation media worked independently without any interaction. Separation of the solutes and their enantiomers was regulated by adjusting both the concentration and plug length (PL) of the micellar solution in the capillary, employing methyl beta-CD as chiral selector either at 38 or 76 mM. The solutes were separated on the basis of their affinity towards the micellar phase before they reached the methyl-beta-CD plug for enantioseparation. In the absence of the micellar plug, the enantiomers of prilocaine overlapped those of bupivacaine. The solutes and their enantiomers were completely separated by employing two adjacent plugs consisting of 100 mM Tween 20 solution (PL approximately 10 cm) and methyl-beta-CD solution at either 38 or 76 mM (PL approximately 30 cm).  相似文献   

20.
Electrophoretic separations of neuromediators on microfluidic devices   总被引:1,自引:0,他引:1  
In the present work, on-chip capillary electrophoresis for the separation of neuromediators is demonstrated. The influence of separation buffer (composition, pH, SDS additive), on-chip electrokinetic sample stacking, and surface pretreatment of the PDMS-PDMS and hybrid PDMS-glass devices on the electrokinetic characteristics of microfluidics (νeo, μeo, ζ) and separation performance of on-chip capillary electrophoresis of neuromediators have been investigated. It is demonstrated that for the effective separation of neuropeptides on elastomer-based microfluidic devices, on-chip sample stacking is necessary. Field-amplified sample stacking for electroosmotic flow supported on-chip separations of neuromediators and without special design of the sample injection scheme has been demonstrated. Electrophoretic separations of fluorescently labeled analytes have been achieved within tens of seconds at injection volumes of about 110 pL, with plate numbers varying from <1000 to ∼22,000. These results demonstrate that on-chip separation methods with hybrid PDMS-glass devices are perspective for the analysis of (neuro)peptides in small volumes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号