首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new synthesized modified mesoporous silica (MCM-41) using 5-nitro-2-furaldehyde (fural) was applied as an effective sorbent for the solid phase extraction of uranium(VI) and thorium(IV) ions from aqueous solution for the measurement by inductively coupled plasma optical emission spectrometry (ICP OES). The influences of some analytical parameters on the quantitative recoveries of the analyte ions were investigated in batch method. Under optimal conditions, the analyte ions were sorbed by the sorbent at pH 5.5 and then eluted with 1.0 mL of 1.0 mol L−1 HNO3. The preconcentration factor was 100 for a 100 mL sample volume. The limits of detection (LOD) obtained for uranium(VI) and thorium(IV) were 0.3 μg L−1. The maximum sorption capacity of the modified MCM-41 was found to be 47 and 49 mg g−1 for uranium(VI) and thorium(IV), respectively. The sorbent exhibited good stability, reusability, high adsorption capacity and fast rate of equilibrium for sorption/desorption of uranium and thorium ions. The applicability of the synthesized sorbent was examined using CRM and real water samples.  相似文献   

2.
A new solid phase extraction method for separation and preconcentration of trace amounts of uranium, thorium, and zirconium in water samples is proposed. The procedure is based on the adsorption of U(VI), Th(IV) and Zr(IV) ions on a column of Amberlite XAD-2000 resin loaded with α-benzoin oxime prior to their simultaneous spectrophotometric determination with Arsenazo III using orthogonal signal correction partial least squares method. The enrichment factor for preconcentration of uranium, thorium, and zirconium was found to be 100. The detection limits for U(VI), Th(IV) and Zr(IV) were 0.50, 0.54, and 0.48 μg L−1, respectively. The precision of the method, evaluated as the relative standard deviation obtained by analyzing a series of 10 replicates, was below 4% for all elements. The practical applicability of the developed sorbent was examined using synthetic seawater, natural waters and ceramic samples.  相似文献   

3.
A new chelating polymeric sorbent is developed using Merrifield chloromethylated resin anchored with calix[4]arene-o-vanillinsemicarbazone for simultaneous separation and solid phase extractive preconcentration of U(VI) and Th(IV). The “upper-rim” functionalized calix[4]arene-o-vanillinsemicarbazone was covalently linked to Merrifield resin and characterized by FT-IR and elemental analysis. The synthesized chelating polymeric sorbent shows superior binding affinity towards U(VI) and Th(IV) under selective pH conditions. Various physico-chemical parameters that influence the quantitative extraction of metal ions were optimized. The optimum pH range and flow rates for U(VI) and Th(IV) were 6.0-7.0 and 1.0-4.0 ml min−1 and 3.5-4.5 and 1.5-4.0 ml min−1, respectively. The total sorption capacity found for U(VI) and Th(IV) was 48734 and 41175 μg g−1, respectively. Interference studies carried out in the presence of diverse ions and electrolyte species showed quantitative analyte recovery (98-98.5%) with lower limits of detection, 6.14 and 4.29 μg l−1 and high preconcentration factors, 143 and 153 for U(VI) and Th(IV), respectively. The uptake and stripping of these metal ions on the resin were fast, indicating a better accessibility of the metal ions towards the chelating sites. The analytical applicability of the synthesized polymeric sorbent was tested with some synthetic mixtures for the separation of U(VI) and Th(IV) from each other and also from La(III), Cu(II) and Pb(II) by varying the pH and sequential acidic elution. The validity of the proposed method was checked by analyzing these metal ions in natural water samples, monazite sand and standard geological materials.  相似文献   

4.
Starvin AM  Rao TP 《Talanta》2004,63(2):225-232
Diarylazobisphenol (DAB) 1 and diarylazobisphenol modified carbon 2 were synthesized and characterised. The latter has been used for solid phase extractive preconcentration and separation of trace amounts of uranium(VI) from other inorganics. In this, a column mode preconcentration of uranium(VI) was carried out in the pH range 4.0-5.0, eluted with 1.0 mol l−1 HCl and determined by an Arsenazo III spectrophotometric procedure. Calibration graphs were rectilinear over the uranium(VI) concentrations in the range 5-200 μg l−1. Five replicate determinations of 25 μg of uranium(VI) present in 1 l solution gave a mean absorbance of 0.032 with a relative standard deviation of 2.52%. The detection limit corresponding to three times the standard deviation of the blank was found to be 5 μg l−1. The accuracy of the developed preconcentration method in conjunction with the Arsenazo III procedure was tested by analysing MESS-3, a marine sediment certified reference material. Further, the above procedure has been successfully employed for analysis of uranium(VI) in soil and sediment samples.  相似文献   

5.
Amberlite XAD-4 resin has been functionalized with succinic acid by coupling it with dibromosuccinic acid after acetylation. The resulting resin has been characterized by FT-IR, elemental analysis and TGA and has been used for preconcentrative separation of uranium(VI) from host of other inorganic species prior to its determination by spectrophotometry. The optimum pH value for quantitative sorption of uranium(VI) in both batch and column modes is 4.5-8.0 and desorption can be achieved by using 5.0 ml of 1.0 mol l−1 HCl. The sorption capacity of functionalized resin is 12.3 mg g−1. Calibration graphs were rectilinear over the uranium(VI) concentrations in the range 5-200 μg l−1. Five replicate determinations of 50 μg of uranium(VI) present in 1000 ml of solution gave a mean absorbance of 0.10 with a relative standard deviation of 2.56%. The detection limit corresponding to three times the standard deviation of the blank was found to be 2 μg l−1. Various cationic and anionic species at 200-fold amounts do not interfere during the preconcentration of 5.0 μg of uranium(VI) present in 1000 ml (batch) or 100 ml (column) of sample solution. Further, adsorption kinetic and isotherm studies were also carried out by a batch method to understand the nature of sorption of uranium(VI) with the succinic acid functionalized resin. The accuracy of the developed solid phase extractive preconcentration method in conjunction with Arsenazo III procedure was tested by analyzing marine sediment (MESS-3) and soil (IAEA soil-7) reference material. Further, the above procedure has been successfully employed for the analysis of soil and sediment samples.  相似文献   

6.
He Q  Chang X  Wu Q  Huang X  Hu Z  Zhai Y 《Analytica chimica acta》2007,605(2):192-197
A new functional monomer N-(o-carboxyphenyl)maleamic acid (CPMA) was synthesized and chosen for the preparation of surface-grafted ion-imprinted polymers (IIPs) specific for thorium(IV). Polymerizable double bond was introduced to silica gel surface by amidation reaction between -NH2 and maleic anhydride. In the ion-imprinting process, thorium(IV) was complexed with the carboxyl groups, then was imprinted in the polymers grafted to the silica gel surface. The imprinted Th(IV) was removed with 3 mol L−1 HCl. The obtained imprinted particles exhibited excellent selectivity and rapid kinetics process for Th(IV). The relatively selective factor (αr) values of Th(IV)/La(III), Th(IV)/Ce(III), Th(IV)/Nd(III), Th(IV)/U(VI), and Th(IV)/Zr(IV) were 85.7, 88.9, 26.6, 64.4, and 433.8, respectively, which were greater than 1. The precision (R.S.D.), the detection limit (3σ), and the quantification limit (10σ) of the method were 1.9%, 0.51 ng mL−1 and 1.19 ng mL−1, respectively. The prepared IIPs as solid-phase extractants were successfully applied for the preconcentration of trace thorium in natural and certified samples prior to its determination by inductively coupled plasma atomic emission spectrometry (ICP-AES) with satisfactory results.  相似文献   

7.
The paper describes a research of possible application of UTEVA and TRU resins and anion exchanger AMBERLITE CG-400 in nitrate form for the isolation of uranium and thorium from natural samples. The results of determination of distribution coefficient have shown that uranium and thorium bind on TRU and UTEVA resins from the solutions of nitric and hydrochloric acids, and binding strength increases proportionally to increase the concentration of acids. Uranium and thorium bind rather strongly to TRU resin from the nitric acid in concentration ranging from 0.5 to 5 mol L−1, while large quantities of other ions present in the sample do not influence on the binding strength. Due to the difference in binding strength in HCl and HNO3 respectively, uranium and thorium can be easily separated from each other on the columns filled with TRU resin. Furthermore, thorium binds to anion exchanger in nitrate form from alcohol solutions of nitric acid very strongly, while uranium does not, so they can be easily separated. Based on these results, we have created the procedures of preconcentration and separation of uranium and thorium from the soil, drinking water and seawater samples by using TRU and UTEVA resins and strong base anion exchangers in nitrate form. In one of the procedures, uranium and thorium bind directly from the samples of drinking water and seawater on the column filled with TRU resin from 0.5 mol L−1 HNO3 in a water sample. After binding, thorium is separated from uranium with 0.5 mol L−1 HCl, and uranium is eluted with deionised water. By applying the described procedure, it is possible to achieve the concentration factor of over 1000 for the column filled with 1 g of resin and splashed with 2 L of the sample. Spectrophotometric determination with Arsenazo III, with this concentration factor results in detection limits below 1 μg L−1 for uranium and thorium. In the second procedure, uranium and thorium are isolated from the soil samples with TRU resin, while they are separated from each other on the column filled with anion exchanger in alcohol solutions. Anion exchanger combined with alcohol solutions enables isolation of thorium from soil samples and its separation from a wide range of elements, as well as spectrophotometric determination, ICP-MS determination, and other determination techniques.  相似文献   

8.
Orhan Hazer  ?enol Kartal 《Talanta》2010,82(5):1974-1979
Poly(acrylamidoxime-co-2-acrylamido-2-methylpropane sulfonic acid) (PAMSA) hydrogel was prepared by copolymerization of acrylonitrile and 2-acrylamido-2-methylpropane sulfonic acid as monomer, N,N′-methylenebis(acrylamide) as crosslinking agent and potassium peroxodisulfate as initiator. Amidoximated copolymer network was prepared by the reaction of copolymer network with hydroxylamine hydrochloride. A batch procedure was used for the determination of the characteristics of the U(VI) solid phase extraction from the amidoximated hydrogel. The determination of U(VI) was performed by spectrophotometric method using arsenazo-III as complexing agent. Optimal pH value for the quantitative preconcentration was 3, and full desorption was achieved with 3 mol L−1 HClO4. The adsorption process can be well described by the pseudo-second-order kinetic model, and the equilibrium adsorption isotherm was closely fitted with the Langmuir model. A preconcentration factor of 20 and the three sigma detection limit of 2.8 μg L−1 (n = 20) were achieved for uranium(VI) ions. The PAMSA hydrogel was used for separating and preconcentrating the uranyl ion existing in sea water samples, thermal spring water samples and the certified reference materials (TMDA 64; fortified lake water sample).  相似文献   

9.
A novel optical sensor has been proposed for sensitive determination of thorium (IV) ion in aqueous solutions. The thorium sensing membrane was prepared by incorporating 4-(p-nitrophenyl azo)-pyrocatechol (NAP) as ionophore in the plasticized PVC membrane containing tributyl phosphate (TBP) as plasticizer. The membrane responds to thorium ion by changing color reversibly from yellow to red-brown in glycine buffer solution at pH 3.5. The proposed sensor displays a linear range of 8.66 × 10−6-2.00 × 10−4 M with a limit of detection of 6 × 10−6 M. The response time of the optode was about 8.8-12.5 min, depending on the concentration of Th (IV) ions. The selectivity of optode to Th (IV) ions in glycine buffer is good. The sensor can readily be regenerated by exposure to a solution mixture of sodium fluoride and 5-sulfosalicylic acid (dihydrate) (0.01 M each). The optode is fully reversible. The proposed optode was applied to the determination of thorium (IV) in environmental water samples.  相似文献   

10.
A multi-element preconcentration-separation technique for heavy metal ions in environmental samples has been established. The procedure is based on coprecipitation of gold(III), bismuth(III), cobalt(II), chromium(III), iron(III), manganese(II), nickel(II), lead(II), thorium(IV) and uranium(VI) ions by the aid of Cu(II)-9-phenyl-3-fluorone precipitate. The Cu(II)-9-phenyl-3-fluorone precipitate was dissolved by the addition 1.0 mL of concentrated HNO3 and then the solution was completed to 5 mL with distilled water. Iron, lead, cobalt, chromium, manganese and nickel levels in the final solution were determined by flame atomic absorption spectrometer, while gold, bismuth, uranium and thorium were determined by inductively coupled plasma mass spectrometer. The optimal conditions are pH 7, amounts of 9-phenyl-3-fluorone: 5 mg and amounts of Cu(II): 1 mg. The effects of concomitant ions as matrix were also examined. The preconcentration factor was 30. Gold(III), bismuth(III), chromium(III), iron(III), lead(II) and thorium(IV) were quantitatively recovered from the real samples. The detection limits for the analyte elements based on 3 sigma (n = 15) were in the range of 0.05-12.9 μg L−1. The validation of the presented procedure was checked by the analysis of two certified reference materials (Montana I Soil (NIST-SRM 2710) and Lake Sediment (IAEA-SL-1)). The procedure was successfully applied to some environmental samples including water and sediments.  相似文献   

11.
Numerous commonly used analytical methods allow only determination of a total amount of selenium in a given sample. Electroanalytical methods as well as those based on hydride generation or on formation of piazselenol allow only determination of Se(IV). To determine Se(VI) by these procedures, present alone or in mixtures with Se(IV), it is first necessary to convert Se(VI) to Se(IV). Such conversion is effective in the presence of excess of halides in acidic media or by photoreduction. In the often used conversion of Se(VI) in the presence of chlorides or less frequently of that of bromides, it has been assumed that the halide ion acts as a reducing agent. Kinetic studies of conversion of Se(VI) in acidic solutions containing an excess of bromide ions indicated that the rate determining first step of the reaction with Se(VI) is a nucleophilic substitution of the OH2+ group in the protonated form of H2SeO4 by bromide ions. For the overall reaction with rate −d[Se(VI)]/dt = k1[H+][Br]1.15[Se(IV)] the rate constant 1 × 10−3 L2 mol−2 s−1 was found. The following formation of Se(IV) from the bromo derivative is a fast reaction probably resulting in elimination of HBrO.  相似文献   

12.
A smart fully automated system is proposed for determination of thorium and uranium in a wide concentration range, reaching environmental levels. The hyphenation of lab-on-valve (LOV) and multisyringe flow injection analysis (MSFIA), coupled to a long path length liquid waveguide capillary cell, allows the spectrophotometric determination of thorium and uranium in different types of environmental sample matrices achieving high selectivity and sensitivity levels. Online separation and preconcentration of thorium and uranium is carried out by means of Uranium and TEtraValents Actinides resin. The potential of the LOV–MSFIA makes possible the full automation of the system by the in-line regeneration of the column and its combination with a smart methodology is a step forward in automation. After elution, thorium(IV) and uranium(VI) are spectrophotometrically detected after reaction with arsenazo-III. We propose a rapid, inexpensive, and fully automated method to determine thorium(IV) and uranium(VI) in a wide concentration range (0–1,200 and 0–2,000 μg L-1 Th and U, respectively). Limits of detection reached are 5.9 ηg L-1 of uranium and 60 ηg L-1 of thorium. Different water sample matrices (seawater, well water, freshwater, tap water, and mineral water), and a channel sediment reference material which contained thorium and uranium were satisfactorily analyzed with the proposed method.  相似文献   

13.
A cloud point extraction process using mixed micelle of the cationic surfactant CTAB and non-ionic surfactant TritonX-114 to extract uranium(VI) from aqueous solutions was investigated. The method is based on the color reaction of uranium with pyrocatechol violet in the presence of potassium iodide in hexamethylenetetramine buffer media and mixed micelle-mediated extraction of complex. The optimal extraction and reaction conditions (e.g. surfactant concentration, reagent concentration, effect of time) were studied and the analytical characteristics of the method (e.g. limit of detection, linear range, preconcentration, and improvement factors) were obtained. Linearity was obeyed in the range of 0.20-10.00 ng mL−1 of uranium(VI) ion and the detection limit of the method is 0.06 ng mL−1. The interference effect of some anions and cations was also tested. The method was applied to the determination of uranium(VI) in tap water, waste-water and well water samples.  相似文献   

14.
Wu Y  Jiang Z  Hu B 《Talanta》2005,67(4):854-861
A simple and selective method of flow injection (FI) using a micro-column packed with quinine modified resin as solid phase extractant has been developed for preconcentration and separation of trace amount of vanadium(V) and vanadium(IV) in water samples, followed by determination with fluorination assisted electrothermal vaporization (FETV)-inductively coupled plasma optical emission spectrometry (ICP-OES). At pH 3 ∼ 3.8, the modified resin is selective towards V(V) and almost not towards V(IV), while, V(IV) could be quantitatively adsorbed by the modified resin at pH 5 ∼ 7. The two vanadium species adsorbed by modified resin could be readily desorbed quantitatively with 0.3 ml of 0.5 mol l−1 HCl. Both vanadium species in elution were then determined by ETV-ICP-OES with the use of polytetrafluoroethylene (PTFE) as chemical modifier. Effects of acidity, sample flow rate, concentration of elution solution and interfering ions on the recovery of the analytes have been systematically investigated. Under the optimal conditions, the adsorption capacities of the quinine modified resin for V(V) and V(IV) are 7.6 and 8.0 mg g−1, respectively. The detection limit (3σ) of V is 0.072 ng ml−1 for FETV-ICP-OES and 0.56 pg ml−1 for FETV-ICP-MS with enrichment factor of 62.5, and the relative standard deviation (R.S.D.) is 4.9% (n = 9, C = 0.2 μg ml−1) and 3.8% (n = 9, C = 1.0 ng ml−1), respectively. The proposed method has been applied to the determination of trace V(V) and V(IV) in different water samples, and the recoveries of V(V) and V(IV) are 100 ± 10%. In order to further verify the accuracy of the developed method, FETV-ICP-MS was employed to analyze the vanadium species in water samples after separation/preconcentration, and analytical results are in good agreement with that obtained by the proposed method. The developed method was also applied to the analysis of the total V in GBW07401 soil certified reference material and in GBW07605 tea leaves certified reference material, and the determined values coincided with the certified values very well.  相似文献   

15.
M.F. El-Shahat  A.B. Farag 《Talanta》2007,71(1):236-241
The new type of the grafted polyurethane foam sorbents were prepared by coupling polyether polyol, toluene diisocyanate and basic dyestuff (Methylene blue, Rhodamine B and Brilliant green). The Me.B-PUF, Rh.B-PUF and Br.G-PUF were characterized using UV/vis, IR and TGA. The adsorption properties and chromatographic behaviour of these new adsorbents for preconcentration and separation of uranium(VI) ions at low concentrations from aqueous thiocyanate media were investigated by a batch process. The maximum sorption of U(VI) was in the pH ranges 1-4. The kinetics of sorption of the U(VI) by the Grafted-PUF were found to be fast with half life of sorption (t1/2) in 2.43 min. The average sorption capacity of different sorbents 0.124 meq g−1 for uranyl ions, enrichment factors ≈40 and the recovery 98-100% were achieved (R.S.D. ≈ 0.73%). The basic dyestuff Grafted-PUF could be used many times without decreasing their capacities significantly. The value of the Gibbs free energy (ΔG) for the sorbents is −7.3 kJ mol−1, which reflects the spontaneous nature of sorption process. The sorption mechanism of the metal ion onto Grafted-PUF was also discussed.  相似文献   

16.
A new functionalized mesoporous silica (MCM-41) using salicylaldehyde was utilized for the separation, preconcentration and determination of uranium in natural water by inductively coupled plasma atomic emission spectrometry (ICP-AES).Experimental conditions for effective adsorption of trace levels of U(VI) were optimized. The preconcentration factor was 100 (1.0 mL of elution for a 100 mL sample volume). The analytical curve was linear in the range 2-1000 μg L−1 and the detection limit was 0.5 ng mL−1. The relative standard deviation (R.S.D.) under optimum conditions was 2.5% (n = 10). Common coexisting ions did not interfere with the separation and determination of uranium at pH 5. The sorbent exhibited excellent stability and its sorption capacity under optimum conditions has been found to be 10 mg of uranium per gram of sorbent. The method was applied for the recovery and determination of uranium in different water samples.  相似文献   

17.
Electropolymerization of 3,3′-diaminobenzidine on a gold surface gave an adherent, stable film of poly(3,3′-diaminobenzidine) (PDAB). This polymer film retained the complexational functionalities of its monomer, demonstrating preconcentration abilities for several ions, including Se(IV) and Te(IV). In particular, in this work, continuous flow and flow injection methods were developed for the sensitive and selective determination of Te(IV). The optimized method for the continuous flow mode had a detection limit of 5.6×10−9 mol l−1 for 10 min preconcentration. Typical relative standard deviations for six consecutive determinations were 1.82 and 2.56% for Te(IV) concentrations of 1.0×10−6 and 5.0×10−8 mol l−1, respectively (10 min preconcentration). The method was applied to the determination of Te(IV) in real samples.  相似文献   

18.
Silica gel-bound amines phase modified with p-dimethylaminobenzaldehyde (p-DMABD) was prepared based on chemical immobilization technique. The product (SG-p-DMABD) was used as an adsorbent for the solid-phase extraction (SPE) Cr(III), Cu(II), Ni(II), Pb(II) and Zn(II) prior to their determination by inductively coupled plasma optical emission spectrometry (ICP-OES). The uptake behaviors of SG-p-DMABD for extracting these metal ions were studied using batch and column procedures. For the batch method, the optimum pH range for Cr(III) and Ni(II) extraction was ≥ 3, for Cu(II), Pb(II) and Zn(II) extraction it was ≥ 4. For simultaneous enrichment and determination of all the metals on the newly designed adsorbent, the pH value if 4.0 was selected. All the metal ions can be desorbed with 2.0 mL of 0.5 mol L− 1 of HCl. The results indicate that SG-p-DMABD has rapid adsorption kinetics using the batch method. The adsorption capacity for these metal ions is in the range of 0.40-1.15 mmol g− 1, with a high enrichment factor of 125. The presence of commonly coexisting ions does not affect the sorption capacities. The detection limits of the method were found to be 1.10, 0.69, 0.99, 1.10 and 6.50 μg L− 1 for Cr(III), Cu(II), Ni(II), Pb(II) and Zn(II), respectively. The relative standard deviation (RSD) of the method under optimum conditions was 5.0% (n = 8) for all metal ions. The method was applied to the preconcentration of Cr(III), Cu(II), Ni(II), Pb(II) and Zn(II) from the certified reference material (GBW 08301, river sediment) and water samples with satisfactory results.  相似文献   

19.
The present paper proposes the application of multiwall carbon nanotubes (MWCNTs) as a solid sorbent for lead preconcentration using a flow system coupled to flame atomic absorption spectrometry. The method comprises the preconcentration of Pb (II) ions at a buffered solution (pH 4.7) onto 30 mg of MWCNTs previously oxidized with concentrated HNO3. The elution step is carried out with 1.0 mol L−1 HNO3. The effect of the experimental parameters, including sample pH, sampling flow rate, buffer and eluent concentrations were investigated by means of a 24 full factorial design, while for the final optimization a Doehlert design was employed. Under the best experimental conditions the preconcentration system provided detection and quantification limits of 2.6 and 8.6 μg L−1, respectively. A wide linear range varying from 8.6 up to 775 μg L−1 (r > 0.999) and the respective precision (relative standard deviation) of 7.7 and 1.4% for the 15 and 200 μg L−1 levels were obtained. The characteristics obtained for the performance of the flow preconcentration system were a preconcentration factor of 44.2, preconcentration efficiency of 11 min−1, consumptive index of 0.45 mL and sampling frequency estimated as 14 h−1. Preconcentration studies of Pb (II) ions in the presence of the majority foreign ions tested did not show interference, attesting the good performance of MWCNTs. The accuracy of the method was assessed from analysis of water samples (tap, mineral, physiological serum and synthetic seawater) and common medicinal herbs submitted to the acid decomposition (garlic and Ginkgo Biloba). The satisfactory recovery values obtained without using analyte addition method confirms the feasibility of this method for Pb (II) ions determination in different type of samples.  相似文献   

20.
Rao TP  Metilda P  Gladis JM 《Talanta》2006,68(4):1047-1064
The need for the preconcentration of trace and ultratrace amounts of uranium(VI) and thorium(IV) in conjunction with various detection techniques was clearly brought out in the introductory part. Subsequently, various off-line and on-line procedures developed for uranium(VI) and thorium(IV) prior to their analytical determination since 1990 were critically reviewed in terms of enrichment factor, retention/sorption capacity, validation using certified reference materials and application to complex real samples. The relative merits and demerits of various preconcentration and/or separation of uranium(VI) and thorium(IV) prior to quantitation by a plethora of analytical techniques are discussed in concluding part of the review article.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号