首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A rapid and sensitive method for the determination of carbendazim (methyl benzimidazole-2-ylcarbamate, MBC) and thiabendazole (TBZ) in water and soil samples was developed by using dispersive liquid-liquid microextraction (DLLME) coupled with high performance liquid chromatography with fluorescence detection. The water samples were directly used for the DLLME extraction. For soil samples, the target analytes were first extracted by 0.1 mol L−1 HCl. Then, the pH of the extract was adjusted to 7.0 with 2 mol L−1 NaOH before the DLLME extraction. In the DLLME extraction method, chloroform (CHCl3) was used as extraction solvent and tetrahydrofuran (THF) as dispersive solvent. Under the optimum conditions, the enrichment factors for MBC and TBZ were ranged between 149 and 210, and the extraction recoveries were between 50.8 and 70.9%, respectively. The linearity of the method was obtained in the range of 5-800 ng mL−1 for water sample analysis, and 10-1000 ng g−1 for soil samples, respectively. The correlation coefficients (r) ranged from 0.9987 to 0.9997. The limits of detection were 0.5-1.0 ng mL−1 for water samples, and 1.0-1.6 ng g−1 for soil samples. The relative standard deviations (RSDs) varied from 3.5 to 6.8% (n = 5). The recoveries of the method for MBC and TBZ from water samples at spiking levels of 5 and 20 ng mL−1 were 84.0-94.0% and 86.0-92.5%, respectively. The recoveries for soil samples at spiking levels of 10 and 100 ng g−1 varied between 82.0 and 93.4%.  相似文献   

2.
Abdorreza Mohammadi 《Talanta》2009,78(3):1107-1114
A simple and rapid headspace solid-phase microextraction (HS-SPME) based method is presented for the simultaneous determination of atrazine and ametryn in soil and water samples by ion mobility spectrometry (IMS). A dodecylsulfate-doped polypyrrole (PPy-DS), synthesized by electrochemical method, was applied as a laboratory-made fiber for SPME. The HS-SPME system was designed with a cooling device on the upper part of the sample vial and a circulating water bath for adjusting the sample temperature. The extraction properties of the fiber to spiked soil and water samples with atrazine and ametryn were examined, using a HS-SPME device and thermal desorption in injection port of IMS. Parameters affecting the extraction efficiency such as the volume of water added to the soil, pH effect, extraction time, extraction temperature, salt effect, desorption time, and desorption temperature were investigated. The HS-SPME-IMS method with PPy-DS fiber, provided good repeatability (RSDs < 10 %), simplicity, good sensitivity and short analysis times for spiked soil (200 ng g−1) and water samples (100 and 200 ng mL−1). The calibration graphs were linear in the range of 200-4000 ng g−1 and 50-2800 ng mL−1 for soil and water respectively (R2 > 0.99). Detection limits for atrazine and ametryn were 37 ng g−1 (soil) and 23 ng g−1 (soil) and 15 ng mL−1 (water) and 10 ng mL−1 (water), respectively. To evaluate the accuracy of the proposed method, atrazine and ametryn in the three kinds of soils and two well water samples were determined. Finally, comparing the HS-SPME results for extraction and determination of selected triazines using PPy-DS fiber with the other methods in literature shows that the proposed method has comparable detection limits and RSDs and good linear ranges.  相似文献   

3.
A new method for the determination of aflatoxins B1, B2, G1, and G2 (AFB1, AFB2, AFG1, AFG2) in cereal flours based on solid-phase microextraction (SPME) coupled with high performance liquid chromatography with post-column photochemical derivatization and fluorescence detection (SPME–HPLC–PD–FD) has been developed. Aflatoxins were extracted from cereal flour samples by a methanol:phosphate buffer (pH 5.8, I = 0.1) (80:20, v/v) solution, followed by a SPME step. Different SPME and HPLC–PD–FD parameters (fiber polarity, temperature, pH, ionic strength, adsorption and desorption time, mobile phase) have been investigated and optimized. This method, which was assessed for the analysis of different cereal flours, showed interesting results in terms of LOD (from 0.035 to 0.2 ng g−1), LOQ (from 0.1 to 0.63 ng g−1, respectively), within and inter-day repeatability (2.27% and 5.38%, respectively) linear ranges (up to 20 ng g−1 for AFB1 and AFG1 and 6 ng g−1 for AFB2 and AFG2), and total raw extraction efficiency (in the range 55–59% at concentrations in the range 0.3–1 ng g−1 and 49–52% at concentrations in the range 1–10 ng g−1). The results were also compared with the purification step carried out by conventional immunoaffinity columns.  相似文献   

4.
A highly sensitive mechanized method has been developed for the determination of mercury in milk by atomic fluorescence spectrometry (AFS). Samples were sonicated for 10 min in an ultrasound water bath in the presence of 8% (v/v) aqua regia, 2% (v/v) antifoam A and 1% (m/v) hydroxilamine hydrochloride, and after that, they were treated with 8 mmol l−1 KBr and 1.6 mmol l−1 KBrO3 in an hydrochloric medium. Atomic fluorescence measurements were made by multicommutation, which provides a fast alternative in quality control analysis, due to the easy treatment of a large number of samples (approximately 70 h−1), and is an environmentally friendly procedure, which involves a waste generation of only 94.5 ml h−1 as compared with the 605 ml h−1 obtained by using continuous AFS measurements. The limit of detection found was 0.011 ng g−1 Hg in the original sample. The method provided a relative standard deviation of 3.4% for five independent analysis of a sample containing 0.30 ng g−1 Hg. To validate the accuracy of the method, a certified reference material NIST-1459 (non-fat milk powder) containing 0.3±0.2 ng g−1 Hg was analysed and a value of 0.27±0.06 ng g−1 Hg was found. A comparison made between data found by the developed procedure and those obtained by microwave-assisted digestion and continuous AFS measurements evidenced a good comparability between these two strategies. Results obtained for commercially available milk samples varied between 0.09 and 0.61 ng g−1 Hg depending on the type of sample and its origin. The confluence of the analytical waste with a 6 mol l−1 NaOH allowed us to reduce the waste generation in a working session from 1 l to 5 g solid residue with a matrix of Fe(OH)3 which contributes to the deactivation of traces of heavy metals presents in the samples that does not form volatile hydrides.  相似文献   

5.
Fenitrooxon [O,O-dimethyl-O-(4-nitro-m-tolyl)phosphate] is the major metabolite of the organophosphorus insecticide fenitrothion, and 3-methyl-4-nitrophenol is its major degradation product. In the present study, we describe the development of an indirect competitive enzyme-linked immunosorbent assay (ELISA) for the detection of these compounds in water samples based on a group-specific polyclonal antiserum generated with a “bifunctional hapten”, which has two functions: the conventional function of producing an antibody against an antigen and a unique function of promoting the production of the antibodies in rabbit. For application to water samples, the influence of several factors such as organic solvent, pH, and detergent was studied. Under optimized conditions, the quantitative working range of the fenitrooxon ELISA was 0.71-27 ng ml−1 with a limit of detection (LOD) of 0.32 ng ml−1, and the fenitrooxon concentration giving 50% reduction of the maximum signal (IC50) was 4.2 ng ml−1. The quantitative working range of the 3-methyl-4-nitrophenol ELISA was 0.67-27 ng ml−1 with a LOD of 0.38 ng ml−1 and an IC50 of 3.7 ng ml−1. No significant matrix effect originating from the water sample (river water, tap water, purified water, and bottled water) was shown by addition of Tween 20 to the assay buffer. Water samples spiked with each of these compounds at 1, 5, 10, and 20 ng ml−1 were directly analyzed without extraction and clean-up by the proposed ELISA. The mean recovery was 100.9%, and the mean coefficient of variation (CV) was 7.7% for the fenitrooxon ELISA and for the 3-methyl-4-nitrophenol ELISA, the mean recovery was 97.6%, and the mean CV was 7.2%. The proposed ELISA allows precise and accurate determination of these compounds in water at such low levels.  相似文献   

6.
Polyclonal antibody (PAb) with broad-specificity for O,O-diethyl organophosphorus pesticides (OPs) against a generic hapten, 4-(diethoxyphosphorothioyloxy)benzoic acid, was produced. The obtained PAb showed high sensitivity to seven commonly used O,O-diethyl OPs in a competitive indirect enzyme-linked immunosorbent assay (ciELISA) using a heterologous coating antigen, 4-(3-(diethoxyphosphorothioyloxy)phenylamino)-4-oxobutanoic acid. The 50% inhibition value (IC50) was 348 ng mL−1 for parathion, 13 ng mL−1 for coumaphos, 22 ng mL−1 for quinalphos, 35 ng mL−1 for triazophos, 751 ng mL−1 for phorate, 850 ng mL−1 for dichlofenthion, and 1301 ng mL−1 for phoxim. The limit of detection (LOD) met the ideal detection criteria of all the seven OP residues. A quantitative structure-activity relationship (QSAR) model was constructed to study the mechanism of antibody recognition using multiple linear regression analysis. The results indicated that the frontier-orbital energies (energy of the highest occupied molecular orbital, EHOMO, and energy of the lowest unoccupied molecular orbital, ELUMO) and hydrophobicity (log of the octanol/water partition coefficient, log P) were mainly responsible for the antibody recognition. The linear equation was log(IC50) = −63.274EHOMO + 15.985ELUMO + 0.556 log P − 25.015, with a determination coefficient (r2) of 0.908.  相似文献   

7.
Ultrasound-assisted leaching-dispersive solid-phase extraction followed by dispersive liquid-liquid microextraction (USAL-DSPE-DLLME) technique has been developed as a new analytical approach for extracting, cleaning up and preconcentrating polybrominated diphenyl ethers (PBDEs) from sediment samples prior gas chromatography-tandem mass spectrometry (GC-MS/MS) analysis. In the first place, PBDEs were leached from sediment samples by using acetone. This extract was cleaned-up by DSPE using activated silica gel as sorbent material. After clean-up, PBDEs were preconcentrated by using DLLME technique. Thus, 1 mL acetone extract (disperser solvent) and 60 μL carbon tetrachloride (extraction solvent) were added to 5 mL ultrapure water and a DLLME technique was applied. Several variables that govern the proposed technique were studied and optimized. Under optimum conditions, the method detection limits (MDLs) of PBDEs calculated as three times the signal-to-noise ratio (S/N) were within the range 0.02-0.06 ng g−1. The relative standard deviations (RSDs) for five replicates were <9.8%. The calibration graphs were linear within the concentration range of 0.07-1000 ng g−1 for BDE-47, 0.09-1000 ng g−1 for BDE-100, 0.10-1000 ng g−1 for BDE-99 and 0.19-1000 ng g−1 for BDE-153 and the coefficients of estimation were ≥0.9991. Validation of the methodology was carried out by standard addition method at two concentration levels (0.25 and 1 ng g−1) and by comparing with a reference Soxhlet technique. Recovery values were ≥80%, which showed a satisfactory robustness of the analytical methodology for determination of low PBDEs concentration in sediment samples.  相似文献   

8.
The present work describes the development of a sensitive analytical method based on pressurized liquid extraction (PLE) and pre-concentration by solid-phase extraction (SPE), followed by liquid chromatography–electrospray tandem mass spectrometry (LC–ESI-MS/MS) for the determination of seventeen pharmaceuticals in soils and sediments. The method is based on sample homogenisation using Na2–EDTA washed sand and extraction with water at 90 °C. Special emphasis was placed on the optimization of the extraction procedure to develop a green method that reduces, at a maximum, the use of organic solvents in order to eliminate matrix components during the clean-up. The proposed method was linear in a concentration range from 0.3 to 333 ng g−1, with correlation coefficients higher than 0.993. Method detection (MDLs) and quantification (MQLs) limits ranged from 0.1 to 6.8 ng g−1 and from 0.25 to 23 ng g−1, respectively. Absolute recoveries were analyte dependent, varying between 50% and 105% at the MQL level, except for fenofibrate (40%) and diclofenac (34%). The intra-day and inter-day precision was given by RSD values from 0.7% to 7.9% and from 1.6% to 14.5%, respectively. Acetaminophen, carbamazepine, ciprofloxacin, clofibric acid, codeine, diazepam, fenofibrate, metropolol, ofloxacin and propanolol were detected at concentrations from MDL to 35.62 ng g−1 in soils and sediments from marsh areas. Due to the low recoveries, results for fenofibrate and diclofenac can only be considered as semi-quantitative. The method was fully suitable for the other 15 pharmaceuticals.  相似文献   

9.
Polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) are hazardous food contaminants, their maximum legally allowable levels in food and environment are in the low pg g−1 range. Therefore some highly selective and sensitive analytical methods must be used to determine them. The 96/23/EC Directive implemented by EC Decision of 12 August 2002 requires recovery rate of an analyte at a concentration below 1 ng g−1 within the 50–120% range at relative standard deviation (RSD) as low as possible.  相似文献   

10.
A single-step, environmentally friendly sample treatment was developed and used in combination with liquid chromatography–tandem mass spectrometry (LC–MS/MS) for the quantitation of hexabromocyclododecane (HBCD) stereoisomers in fish. It was based on the microextraction of the stereoisomers with a supramolecular solvent (SUPRAS) made up of reverse aggregates of decanoic acid (DeA). The procedure involved the stirring of the fish sample (750 mg) with 600 μL of SUPRAS for five minutes, subsequent centrifugation for extract separation from matrix components and direct analysis of the extract after dilution 1:1 with methanol. Individual enantiomers of α-, β- and γ-HBCD were separated on a chiral stationary phase of β-cyclodextrin and quantified by monitoring of the [M−H] → Br transition at m/z 640.9→80.9. Driving forces for the microextraction of HBCD in the SUPRAS involved both dispersion and dipole–dipole interactions. Quantitation limits for the determination of individual HBCD enantiomers in hake, cod, sole, panga, whiting and sea bass were within the intervals 0.5–3.4 ng g−1, 0.9–2.5 ng g−1, 0.6–1.4 ng g−1, 1.0–5.6 ng g−1, 0.8–1.3 ng g−1 and 0.5–3.5 ng g−1, respectively. Recoveries for fish samples fortified at the ng g−1 level ranged between 87 and 114% with relative standard deviations from 1 to 10%. The sample treatment proposed greatly simplifies current procedures for extraction of HBCD stereoisomers and is a useful tool for the development of a large scale database for their presence in fish.  相似文献   

11.
A simple and fast analytical procedure has been developed for the determination of As, Sb, Se, Te and Bi in milk samples by hydride generation atomic fluorescence spectrometry (HG-AFS). Samples were treated with aqua regia for 10 min in an ultrasound water bath and pre-reduced with KBr for total Se and Te determination or with KI and ascorbic acid for total As and Sb, the determination of Bi being possible in all with or without pre-reduction. Slurries of samples, in the presence of antifoam A, were treated with NaBH4 in HCl medium to obtain the corresponding hydrides, and AFS measurements were processed in front of external calibrations prepared and measured in the same way as samples. Results obtained by the developed procedure compare well with those found after microwave-assisted complete digestion of samples. The proposed method is simple and fast, and only 1 ml of milk is needed. The values obtained for detection limit are 2.5, 1.6, 3, 6 and 7 ng l−1 for As, Sb, Se, Te and Bi respectively in the diluted samples, with average relative standard deviation values of 3.8, 3.1, 1.9, 6.4 and 1.2% for three independent analysis of a series of commercially available samples of different origin. Data found in Spanish market samples varied from 3.2±0.3 to 11.3±0.2 ng g−1 As, from 3.1±0.2 to 11.6±0.4 ng g−1 Sb, from 10.7±0.5 to 25.5±0.4 ng g−1 Se, from 0.9±0.2 to 9.4±0.6 ng g−1 Te and from 11.5±0.1 to 27.7±0.4 ng g−1 Bi.  相似文献   

12.
Pesticides residues in aquatic ecosystems are an environmental concern which requires efficient analytical methods. In this study, we proposed a generic method for the quantification of 13 pesticides (azoxystrobin, clomazone, diflufenican, dimethachlor, carbendazim, iprodion, isoproturon, mesosulfuron-methyl, metazachlor, napropamid, quizalofop and thifensulfuron-methyl) in three environmental matrices. Pesticides from water were extracted using a solid phase extraction system and a single solid-liquid extraction method was optimized for sediment and fish muscle, followed by a unique analysis by liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). Limits of quantification were below 5 ng L−1 for water (except for fluroxypyr and iprodion) and ranged between 0.1 ng g−1 and 57.7 ng g−1 for sediments and regarding fish, were below 1 ng g−1 for 8 molecules and were determined between 5 and 49 ng g−1 for the 5 other compounds. This method was finally used as a new routine practice for environmental research.  相似文献   

13.
In this work, an isotope dilution method for the determination, in agricultural and industrial soil samples, of tetrabromobisphenol-A, tetrachlorobisphenol-A and bisphenol-A by gas chromatography–mass spectrometry was developed. The compounds were extracted from soil by sonication assisted extraction in small columns (SAESC) with a low volume of ethyl acetate as extraction solvent. For dirty soil samples, such as industrial soils, a simultaneous clean-up on an acidified Florisil–anhydrous sodium sulfate mixture was carried out to remove interferences. After extraction, solvent was evaporated and analytes were derivatized with N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA) and determined by isotope dilution gas chromatography with electron impact mass spectrometric detection in the selected ion monitoring mode (GC–MS–SIM), using 13C12 labeled compounds as internal standards. Recoveries from spiked samples were between 88% and 108% and the estimated limits of detection (S/N = 3) varied from 30 pg g−1 to 90 pg g−1. The response obtained with this method was linear over the range assayed, 5–300 ng ml−1, with correlation coefficients equal or higher than 0.999. The validated method was used to investigate the levels of these phenolic compounds in soil samples collected from different locations in Spain. Bisphenol-A was detected in all samples at concentrations from 0.7 ng g−1 to 4.6 ng g−1 in agricultural soils and from 1.1 ng g−1 to 44.5 ng g−1 in industrial soils. Tetrabromobisphenol-A was found in various soil samples at levels in the range of 3.4–32.2 ng g−1 in industrial soils and at 0.3 ng g−1 in one agricultural soil, whereas tetrachlorobisphenol-A was not detected.  相似文献   

14.
An europium-sensitized time-resolved luminescence (TRL) method was developed to determine oxytetracycline (OTC) in cultivated catfish muscle. Extraction of OTC from fish muscle was performed with pH 4.0 ethylenediaminetetraacetic acid (EDTA)-McIlvaine buffer and clean up with hydrophilic-lipophilic balanced copolymer solid phase extraction (SPE) cartridges. The eluate was used without further concentration for TRL measurement in pH 9.0 micellar tris(hydroxylmethyl)aminomethane (TRIS) buffer. Cetyltrimethylammonium chloride (CTACl) was used as surfactant and EDTA as a co-ligand. The excitation and emission wavelengths were set at 388 and 615 nm, respectively. The linear dynamic range was 0-1000 ng g−1 (R2=0.9995). The recovery was 92-112% in the fortification range of 50-200 ng g−1 and the limits of detection (LOD) ranged from 3 to 7 ng g−1. Incurred catfish samples were used to demonstrate the performance of the method around 100 ng g−1, the European Union maximum residue level.  相似文献   

15.
Josep Rubert  Jordi Mañes 《Talanta》2010,82(2):567-826
A method based on Matrix Solid-Phase Dispersion (MSPD) has been developed for the determination of 5 mycotoxins (ochratoxin A and aflatoxins B and G) in different cereals. Several dispersants, eluents and ratios were tested during the optimization of the process in order to obtain the best results. Finally, samples were blended with C18 and the mycotoxins were extracted with acetonitrile. Regarding to matrix effects, the results clearly demonstrated the necessity to use a matrix-matched calibration to validate the method. Analyses were performed by liquid chromatography-triple quadrupole-tandem mass spectrometry (LC-QqQ-MS/MS). The recoveries of the extraction process ranged from 64% to 91% with relative standard deviation lower than 19% in all cases, when samples were fortified at two different concentrations levels. Limits of detection ranged from 0.3 ng g−1 for aflatoxins to 0.8 ng g−1 for OTA and the limits of quantification ranged from 1 ng g−1 for aflatoxins to 2 ng g−1 for OTA, which were below the limits of mycotoxins set by European Union in the matrices evaluated. Application of the method to the analysis of several samples purchased in local supermarkets revealed aflatoxins and OTA levels.  相似文献   

16.
Non-chromatographic speciation of toxic arsenic in fish   总被引:1,自引:0,他引:1  
A rapid, sensitive and economic method has been developed for the direct determination of toxic species of arsenic present in fish and mussel samples. As(III), As(V), dimethylarsinic acid (DMA), and monomethylarsonic acid (MMA) were determined by hydride generation-atomic fluorescence spectrometry using a series of proportional equations without the need of a chromatographic previous separation. The method is based on the extraction of arsenic species from fish through sonication with HNO3 3 mol l−1 and 0.1% (m/v) Triton and washing of the solid phase with 0.1% (m/v) EDTA, followed by direct measurement of the corresponding hydrides in four different experimental conditions. The limit of detection of the method was 0.62 ng g−1 for As(III), 2.1 ng g−1 for As(V), 1.8 ng g−1 for MMA and 5.4 ng g−1 for DMA, in all cases expressed in terms of sample dry weight. The mean relative standard deviation values (R.S.D.) in actual sample analysis were: 6.8% for As(III), 10.3% for As(V), 8.5% for MMA and 7.4% for DMA at concentration levels from 0.08 mg kg−1 As(III) to 1.3 mg kg−1 DMA. Recovery studies provided percentages greater than 93% for all species in spiked samples. The analysis of SRM DORM-2 and CRM 627 certified materials evidenced that the method is suitable for the accurate determination of arsenic species in fish.  相似文献   

17.
We have developed a new method for the analysis of the fluoroquinolones enrofloxacin and ciprofloxacin in eggs using a diphasic dialysis procedure as extraction and purification method. High pressure liquid chromatography-mass spectrometry (HPLC-MS) was used for the confirmatory determination of these compounds. The method was found to be linear between 10 and 800 ng g−1 for enrofloxacin, and between 20 and 1600 ng g−1 for ciprofloxacin. The recovery percentages were in the 70-104% range for enrofloxacin, and 55-97% for ciprofloxacin. The assay described was repeatable and reproducible with a limit of quantitation of 2 and 4 ng g−1 for enrofloxacin and ciprofloxacin from egg, respectively.  相似文献   

18.
A simple and rapid procedure for extraction of chloramphenicol (CAP) in milk and analysis by high-performance liquid chromatography coupled with quadrupole mass spectrometry in tandem was developed. The method consisted of one step of liquid-liquid extraction using ethyl acetate and acidified water (10 mmol L−1 formic acid) and HPLC-MS/MS detection. CAP-D5 was used as internal standard. The method was validated according to Commission Decision 2002/657/EC. The calibration curves were linear, with typical r2 values higher than 0.98. Absolute recovery of CAP from milk proved to be more than 95%, however CAP-D5 absolute recovery was 75%. The method was accurate and reproducible, being successfully applied to the monitoring of CAP in milk samples obtained from the Brazilian market. Decision limit (CCα) was 0.05 ng mL−1 and detection capability (CCβ) was 0.09 ng mL−1.  相似文献   

19.
Coacervative microextraction ultrasound-assisted back-extraction technique (CME-UABE) is proposed for the first time for extracting and preconcentrating organophosphates pesticides (OPPs) from honey samples prior to gas chromatography–mass spectrometry (GC–MS) analysis. The extraction/preconcentration technique is supported on the micellar organized medium based on non-ionic surfactant. To enable coupling the proposed technique with GC, it was required to back extract the analytes into hexane. Several variables including, surfactant type and concentration, equilibration temperature and time, matrix modifiers, pH and buffers nature were studied and optimized over the relative response of the analytes. The best working conditions were as follows: an aliquot of 10 mL 50 g L−1 honey blend solution was conditioned by adding 100 μL 0.1 mol L−1 hydrochloric acid (pH 2) and finally extracted with 100 μL Triton X-114 100 g L−1 at 85 °C for 5 min using CME technique. Under optimal experimental conditions, the enrichment factor (EF) was 167 and limits of detection (LODs), calculated as three times the signal-to-noise ratio (S/N = 3), ranged between 0.03 and 0.47 ng g−1. The method precision was evaluated over five replicates at 1 ng g−1 with RSDs ≤9.5%. The calibration graphs were linear within the concentration range of 0.3–1000 ng g−1 for chlorpirifos; and 1–1000 ng g−1 for fenitrothion, parathion and methidathion, respectively. The coefficients of correlation were ≥0.9992. Validation of the methodology was performed by standard addition method at two concentration levels (2 and 20 ng g−1). The recoveries were ≥90%, indicating satisfactory robustness of the methodology, which could be successfully applied for determination of OPPs in honey samples of different Argentinean regions. Two of the analyzed samples showed levels of methidathion ranged between 1.2 and 2.3 ng g−1.  相似文献   

20.
A new procedure was described with multiwalled carbon nanotubes as solid phase extraction packing material for the trace analysis of nicosulfuron, thifensulfuron and metsulfuron-methyl in water samples. The possible parameters influencing the enrichment were optimized and the optimal conditions were as followed: eluent, sample pH, flow rate and sample volume were acetonitrile containing 1% acetic acid, pH 3, 8 mL min−1 and 500 mL, respectively. Under the optimal chromatographic separation and SPE conditions, the linear range, detection limit (S/N = 3) and precision (R.S.D., n = 6) were 0.04-40 ng mL−1, 6.8 ng L−1 and 2.5% for nicosulfuron, 0.04-40 ng mL−1, 11.2 ng L−1 and 5.4% for thifensulfuron, 0.02-20 ng mL−1, 5.9 ng L−1, 2.1% for metsulfuron-methyl, respectively. The established method was well employed to determine nicosulfuron, thifensulfuron and metsulfuron-methyl in tap water, seawater, reservoir water and well water samples, and satisfactory results were obtained, the spiked recoveries in the range of 87.2-100.7%, 96.5-105.6% and 83.7-111.1% for them each, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号