首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The two chromium chelates of Schiff bases, N-(acetoacetanilide)-1,2-diaminoethane (L1) and N,N′-bis(acetoacetanilide)-triethylenetetraammine (L2), have been synthesized and explored as neutral ionophores for preparing poly(vinylchloride) (PVC) based membrane sensors selective to Cr(III). The addition of lipophilic anion excluder (NaTPB) and various plasticizers viz. o-Nitrophenyloctyl ether (o-NPOE), dioctylpthalate (DOP), dibutylphthalate (DBP), tris(2-ethylhexyl)phosphate (TEHP), and benzyl acetate (BA) have found to improve the performance of the sensors. The best performance was obtained for the membrane sensor having a composition of L1:PVC:DBP:NaTPB in the ratio 5:150:250:3 (w/w). The sensor exhibits Nernstian response in the concentration range 8.9 × 10−8 to 1.0 × 10−1 M Cr3+ with limit of detection 5.6 × 10−8 M. The proposed sensor manifest advantages of relatively fast response (10 s) and good selectivity over some alkali, alkaline earth, transition and heavy metal ions. The selectivity behavior of the proposed electrode revealed a considerable improvement as compared to the best previously PVC-membrane electrode for chromium(III) ion. The potentiometric response of the proposed sensor was independent of pH of the test solution in the range of 2.0-7.0. The sensor has found to work satisfactorily in partially non-aqueous media up to 20% (v/v) content of methanol, ethanol and acetonitrile and could be used for a period of 3 months. The proposed electrode was used as an indicator electrode in potentiometric titration of chromium ion with EDTA and in direct determination in different water and food samples.  相似文献   

2.
A novel bimediator amperometric sensor is fabricated for the first time by surface modification of graphite electrode with thionine (TH) and nickel hexacyanoferrate (NiHCF). The electrochemical behavior of the TH/NiHCF bimediator modified electrode was characterized by cyclic voltammetry, differential pulse voltammetry and chronoamperometry. The TH/NiHCF bimediator modified electrode exhibited a pair of distinct redox peaks for NiHCF and TH with formal potentials of 0.33 V and −0.27 V vs. SCE at a scan rate of 50 mV s−1 in 0.1 M NaNO3 and 0.1 M NH4NO3 respectively. The electrocatalytic activity of the bimediator modified electrode towards oxidation of gallic acid with NiHCF and reduction of hydrogen peroxide with TH was evaluated and it was observed that the modified electrode showed an electrocatalytic activity towards the oxidation of gallic acid in the concentration range of 4.99 × 10−6–1.20 × 10−3 M with a detection limit of 1.66 × 10−6 M (S/N = 3) and reduction of H2O2 in the concentration range of 1.67 × 10−6–1.11 × 10−3 M with a detection limit of 5.57 × 10−7 M (S/N = 3). The bimediator modified electrode was found to exhibit good stability and reproducibility.  相似文献   

3.
Tian L  Liu L  Chen L  Lu N  Xu H 《Talanta》2005,66(1):130-135
A vanadium oxide-modified glassy carbon electrode was simply and conveniently fabricated by casting vanadium tri(isoproxide) oxide (VO(OC3H7)3) and poly(propylene carbonate) (PPC) onto the glassy carbon electrode surface. The electrochemical properties of iodide at the VO(OC3H7)3-PPC film-modified glassy carbon electrode were investigated by cyclic voltammetry, and an anodic peak was observed at approximately +0.71 V (vs. SCE). Based on this, a sensitive and convenient electrochemical method was proposed for the determination of iodide. Flow injection amperometry (FIA) exhibited a good linear relationship with the concentration of iodide in the range of 5 × 10−7 mol L−1 and 1 × 10−3 mol L−1, and the detection limit was 1 × 10−7 mol L−1. Quantitative recovery of iodide in synthetic samples has been obtained and the interferences from different cations and anions have been studied. The method has been successfully applied to the determination of iodide in dry edible seaweed. The concentrations of iodide measured by this method are in good agreement with those obtained by spectrophotometric method.  相似文献   

4.
A series of chromium(III) complexes bearing 2-benzoxazolyl-6-aryliminopyridines was synthesized and characterized by IR spectroscopic and CHN analysis. The X-ray crystallographic analysis of complex Cr3 revealed a distorted octahedral geometry. When activated by Et2AlCl, MAO or MMAO, these chromium complexes exhibited activities towards ethylene reactivity. High activities of ethylene oligomerization (up to 9.19 × 106 g mol−1 (Cr) h−1) were observed in the catalytic system using MMAO as a cocatalyst, meanwhile good activities of ethylene polymerization were achieved (up to 5.20 × 105 g mol−1 (Cr) h−1) by using MAO as a cocatalyst. Various reaction parameters were investigated in detail, and the steric and electronic effects of ligands were discussed.  相似文献   

5.
A new chelating resin, Aurin tricarboxylic acid modified silica, was synthesized. The resin behaves as a selective chelating ion exchanger for Cr(III) at a pH 3.8-5.5. A polyvinyl chloride-based membrane electrode of the modified silica has been fabricated and explored as sensor for Cr(III) ions. The membrane works well over the concentration range 7.0 × 10−6 to 1 × 10−1 M of Cr(III) with a Nernstian slope of 19.0 mV per decade of concentration. The response time of the sensor is 10 s and it can be used for a period of 5 months. The performance of the sensor is best in the pH range 3.5-6.5 and it also works well in partially non-aqueous medium. The selectivity coefficient values depicts that the membrane exhibits good selectivity over a number of interfering ions. Moreover, the membrane sensor has been applied to analyse the concentration of chromium in certified steel sample and food materials with greater than 97% accuracy.  相似文献   

6.
Somer G  Sezer S  Doğan M  Kalaycı S  Sendil O 《Talanta》2011,85(3):1461-1465
A new borate ion selective electrode using solid salts of Ag3BO3, Ag2S and Cu2S has been developed. Detailed information is provided concerning the composition, working pH and conditioning of the electrode. An analytically useful potential change occurred from 1 × 10−6 to 1 × 10−1 M borate ion. The slope of the linear portion was 31 ± 2 mV/10-fold changes in borate concentration. The measurements were made at constant ionic strength (0.1 M NaNO3) and at room temperature. The effect of Cl, Br, NO3, SO=4, H2PO4 anions and K+, Na+, Cu2+, Ag+, Ca2+ cations on borate response is evaluated and it was found that only Ag+ had a small interference effect. The lifetime of the electrode was more than two years, when used at least 4-5 times a day, and the response time was about 20-30 s. Borate content in waste water of borax factory, tap water of a town situated near to the borax factory and city tap water far from these mines were also determined. The validation was made with differential pulse polarography for the same water sample, and high consistency was obtained.  相似文献   

7.
In this article a new coated platinum Cu2+ ion selective electrode based on 2-((2-(2-(2-(2-hydroxy-5-methoxybenzylideneamino)phenyl)disufanyl)phenylimino) methyl)-4-methoxyphenol Schiff base (L1) as a new ionophore is described. This sensor has a wide linear range of concentration (1.2 × 10−7-1.0 × 10−1 mol L−1) and a low detection limit of 9.8 × 10−8 mol L−1of Cu(NO3)2. It has a Nernstian response with slope of 29.54 ± 1.62 mV decade−1 and it is applicable in the pH range of 4.0-6.0 without any divergence in potentioal. The coated electrode has a short response time of approximately 9 s and is stable at least for 3.5 months. The electrode shows a good selectivity for Cu2+ ion toward a wide variety of metal ions. The proposed sensor was successfully applied for the determination of Cu2+ ion in different real and environmental samples and as indicator electrode for potentiometric titration of Cu2+ ion with EDTA.  相似文献   

8.
A new ion-selective electrode (ISE) for the detection of trace chromium(III) was designed by using 2-acetylpyridine and nanoporous silica gel (APNSG)-functionalized carbon paste electrode (CPE). The presence of APNSG acted as not only a paste binder, but also a reactive material. With 7.5 wt% APNSG proportions, the developed electrode exhibited wide dynamic range of 1.0 × 10−8 to 1.0 × 10−3 M toward Cr(III) with a detection limit of 8.0 × 10−9 M and a Nernstian slope of 19.8 ± 0.2 mV decade−1. The as-prepared electrode displayed rapid response (∼55 s), long-time stability, and high sensitivity. Moreover, the potentiometric responses could be carried out with wide pH range of 1.5-5.0. In addition, the content of Cr(III) in food samples, e.g. coffee and tea leaves, has been assayed by the developed electrode, atomic absorption spectrophotometer (AAS) and atomic emission spectrometer (ICP-AES), respectively, and consistent results were obtained. Importantly, the response mechanism of the proposed electrode was investigated by using AC impedance and UV-vis spectroscopy.  相似文献   

9.
A phosphate-selective electrode based on surfactant-modified zeolite (SMZ) particles into carbon-paste has been proposed (SMZ-CPE). The electrode was fully characterized in terms of composition, response time, ionic strength, thermal stability and usable pH range. The electrode containing 20% SMZ exhibited linear response range to phosphate species in the range of 1.58 × 10−5 to 1.00 × 10−2 M with a detection limit of 1.28 × 10−5 M and a Nernstian slope of 29.9 ± 0.9 mV per decade of phosphate concentration. The electrode response to phosphate remains constant in the pH range of 4-12 and in the presence of 1 × 10−4 to 4 × 10−3 M NaNO3. The response of the electrode reaches equilibrium within several seconds after immersing the electrode in phosphate solution. Common anions such as Cl, Br, I, NO3, SO42− and Cr2O72− have little effect on the determination of phosphate but AsO43− shows some interference. A successful application of the electrode for determination of phosphate in a fertilizer, using direct potentiometry, is presented. The electrode was also used for the potentiometric titration of phosphate. The validation of the obtained results in each case was proved by statistical methods.  相似文献   

10.
A new solid state fluoride ion selective electrode composed of 70% Ag2S, 10% Cu2S and 20% CaF2 has been developed. An analytically useful potential change occurred, from 1 × 10−6 to 1 × 10−1 M fluoride ion. The slope of the linear portion (1 × 10−1-1 × 10−5 M) was about 26 ± 2 mV/10-fold concentration changes in fluoride. It was found that pH change between 1 and 8 had no effect on the potential of the electrode. There was no interference of most common cations such as K+, Na+, Ca2+ and Mg2+ and anions such as Cl, NO3, SO42− and PO43−. The lifetime of the electrode was more than 2 years, when used at least 4-5 times a day, and the response time was about 60 s.The measurements were made at constant ionic strength (0.1 M NaNO3) and at room temperature. This electrode has been used for the determination of fluoride ion in Ankara city tap water and in bottled spring water using standard addition method. The validation of the electrode has been made with a commercial fluoride ion selective electrode (Orion) and high consistency was obtained.  相似文献   

11.
A novel in-capillary reduction and capillary electrophoretic (CE)-chemiluminescence (CL) method was developed for the sensitive and selective determination of chromium(III) and chromium(VI). The proposed method was based on the in-capillary reduction of Cr(VI) with acidic H2O2 to form Cr(III) using the zone-passing technique and chemiluminescence detection of Cr(III). The sample [Cr3+ and CrO42−], hydrochloric acid, and H2O2 (reductant) solution segments were injected for specified periods of time in this order from the anodic end of a capillary, followed by application of an appropriate running voltage between both ends. As both chromium species have opposite charges, Cr3+ migrates to the cathode while CrO42− ion, moving oppositely to the anode, reacts with acidic H2O2, resulted in formation of Cr3+. Based on the migration time difference of both Cr3+ ions, they were separated by zone electrophoresis. Running buffer was composed of 0.02 mol l−1 HAc-NaAc (pH 4.7) with 1×10−3 mol l−1 EDTA. Parameters affecting CE-CL separation and detection, such as reductant concentration, mixing mode of the analytes with CL reagent, CL reaction reagent pH and concentration, stability of luminol-hydrogen peroxide mixed solution were optimized. The limits of detection for chromium(III) and chromium(VI) (3σ) were 6×10−13 mol l−1 (mass concentration 12 zmol) and 8×10−12 mol l−1 (160 zmol), respectively. This method offered potential advantages of simplicity, sensitivity, selectivity and applicability to the determination of Cr(III) and Cr(VI) in environmental water.  相似文献   

12.
The concentrations of chromium (III) and (VI) in fly ash from nine Australian coal fired power stations were determined. Cr(VI) was completely leached by extraction with 0.01 M NaOH solution and the concentration was determined by inductively coupled plasma atomic emission spectrometry (ICP-AES). This was confirmed by determining Cr(III) and Cr(VI) in the extracts of fly ash that had been spiked with chromium salts. These analytical measurements were done using a combination of ion-exchange chromatography and ICP-AES. The elutant was 0.05 M HNO3 containing 0.5%-CH3OH. When the column was operated at a flow rate of 1.2 ml min−1 and samples were injected by use of a sample loop with a volume of 100 μl, Cr(III) and Cr(VI) in sample solution was exclusively separated within approximately 10 min. The detection limits (3σ) were 5 ng for Cr(III) (0.050 mg l−1) and 9 ng for Cr(VI) (0.090 mg l−1), respectively. A relative standard deviation of 1.9% (n = 6) was obtained for the determination by IC-ICP-AES of 0.25 mg l−1 Cr(III) and Cr(VI).  相似文献   

13.
Ion-selective properties were established for membrane electrodes prepared by using organotin compounds of type (LCNRSnF2)n, (R = n-Bu (I), = Ph (II)) and (LCNSnF3)n (III) (LCN = C6H4(CH2NMe2)-2). Electrodes formulated with the optimized membranes containing the organotin compounds I-III as ionophores and sodium tetraphenylborate (10-30%) exhibited high selectivity for fluoride over other anions. An electrode prepared with ionophore II using dibutyl phthalate as the plasticizer and 15% sodium tetraphenylborate (NaTPB) as anion additive, possesses the best potentiometric response characteristics. It shows a detection limit of 7.9 × 10−7 M with a slope of 62.7 mV decade−1 of activity in buffer solutions of pH 5.5. The interference from other anions is suppressed under this optimized measurement conditions. An entirely non-Hofmeister selectivity sequence (F > CH3COO > Cl > I ∼ Br >ClO4 > NO2 > NO3 > SCN) with remarkable preference towards fluoride is obtained. The influence on the electrode performances by anion additive was studied, and the possible response mechanism was investigated by UV-vis spectra. The electrode has been used for direct determination of fluoride in drinking mineral water with satisfactory results.  相似文献   

14.
Adrenaline was found to inhibit strongly the electrochemiluminescence (ECL) from the Ru(bpy)32+/tripropylamine system when a working Pt electrode was maintained at 1.05 V (versus Ag/AgCl) in pH 8.0 phosphate buffer. On this basis, a flow injection (FI) procedure with inhibited electrochemiluminescence detection has been developed for determination of adrenaline. The method exhibited a good reproducibility, sensitivity, and stability with a detection limit (signal-to-noise ratio = 3) of 7.0×10−9 mol l−1 and dynamic concentration range of 2×10−8 to 1×10−4 mol l−1. The relative standard deviation was 2.2% for 1.0×10−6 mol l−1 adrenaline (n=11). The method was successfully applied to the determination of adrenaline in pharmaceutical samples. Moreover, ECL emission spectra, UV-Vis absorption spectra and cyclic voltammograms of Ru(bpy)32+/tripropylamine/adrenaline were studied. The inhibition mechanism has been proposed as the interaction of electrogenerated Ru(bpy)32+* and the o-benzoquinone derivatives, adrenochrome and adrenalinequinone, at the electrode surface.  相似文献   

15.
Karami H  Mousavi MF 《Talanta》2004,63(3):743-749
A new dodecyl benzene sulfonate (DBS) ion-selective electrode based on polyaniline is reported. The films of polyaniline doped with DBS were prepared electrochemically on platinum electrodes in the solution containing 1.0×10−3 M aniline and 7.0×10−3 M DBS. The optimum potentiometric response was obtained for prepared polymeric film by passing electricity of 7.5 C cm−2. The electrode exhibits an excellent Nernstian slope of −59.1±0.3 mV per decade for DBS ion over a wide concentration range (5.0×10−6 to 4.1×10−3 M) with a low detection limit (1.0×10−6 M). The proposed electrode revealed good sensitivities for DBS ion over a wide variety of other anions and can be used in the wide pH range of 5-10. It shows good stability, good reproducibility, wide range of pH independency and fast response (<20 s) without using internal solution. This electrode could be used for the determination of DBS in the real samples.  相似文献   

16.
The new ligand 7-methyl-7,13-di-octyl-1,4,10-trioxa-13-aza-7-azonia-cyclopentadecane (L1) has been designed, synthesised and used as ionophore in the development ion-selective electrodes for anionic surfactants. Different PVC-membrane anionic-surfactants-selective electrodes were prepared by using L1 as ionophore and bis(2-ethylhexyl)sebacate (BEHS), dibutyl phthalate (DBP) and nitrophenyl octyl ether (NPOE) as plasticizers. The PVC-membrane electrode containing L1 and NPOE (electrode E1) showed a Nernstian response to lauryl sulfate with a slope of −59.5 mV per decade in a range of concentrations from 1.3 × 10−6 to 6.8 × 10−3 M and a detection limit of 6.0 × 10−7 M. The electrode E1 also showed a reasonable response to other alkyl sulfates and alkylbenzene sulfonates, whereas it does not respond to carboxylates and to cationic and non-ionic surfactants. A similar electrode to E1 but additionally containing the cationic additive n-octylammonium bromide was also prepared (electrode E2) and compared with the response of E1. Selectivity coefficients for different anions with respect to lauryl sulfate were determined by means of the fixed interference method considering lauryl sulfate as the principal anion and using a concentration of 1.0 × 10−2 mol dm−3 for the corresponding interfering anion. The selectivity sequence found for the electrode E1 was: LS > SCN > ClO4 > CH3COO > I > HCO3 > Br > NO3 > NO2 > Cl > IO3 > phosphate > SO32− > C2O42− > SO42−. Electrode E1 showed remarkably better selectivity coefficients than electrode E2.  相似文献   

17.
In this paper, the reduced graphene oxide and multiwall carbon nanotubes hybrid materials (RGO–MWNTs) were prepared and a strategy for detecting environmental contaminations was proposed on the basis of RGO–MWNTs modified electrode. The hybrid materials were characterized by the scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and N2 sorption–desorption isotherms. Due to the excellent catalytic activity, enhanced electrical conductivity and high surface area of the RGO–MWNTs, the simultaneous measurement of hydroquinone (HQ), catechol (CC), p-cresol (PC) and nitrite (NO2) with four well-separate peaks was achieved at the RGO–MWNTs modified electrode. The linear response ranges for HQ, CC, PC and NO2 were 8.0–391.0 μM, 5.5–540.0 μM, 5.0–430.0 μM and 75.0–6060.0 μM, correspondingly, and the detection limits (S/N = 3) were 2.6 μM, 1.8 μM, 1.6 μM and 25.0 μM, respectively. The outstanding film forming ability of RGO–MWNTs hybrid materials endowed the modified electrode enhanced stability. Furthermore, the fabricated sensor was applied for the simultaneous determination of HQ, CC, PC and NO2 in the river water sample.  相似文献   

18.
Ion chromatography (IC) coupled with inductively coupled plasma mass spectrometry (ICP-MS) was systematically investigated for determining the speciation of chromium in environmental samples. Firstly, the stability of complexes formed by Cr(III) with various aminopolycarboxylic acids was studied by electrospray ionization mass spectrometry (ESI-MS). The results showed that [Cr(EDTA)] was stable in solution. Secondly, various mobile phases were examined to separate Cl from chromium species by IC to avoid Cl interference. The separation of [Cr(EDTA)] and Cr(VI) was achieved on a new anion-exchange column (G3154A/102) using a mobile phase containing 20 mM NH4NO3 and 10 mM NH4H2PO4 at pH 7.0 without Cl interference. Detection limits for chromium species were below 0.2 μg/L with a direct injection of sample and without prior removal of interferences from the matrix. Finally, the proposed method was used for the determination of chromium species in contaminated waters.  相似文献   

19.
Li Mao  Ruo Yuan  Yaqin Chai  Xia Yang 《Talanta》2010,80(5):1692-4551
An effective method for immobilization of Ru(bpy)32+ on glassy carbon electrode surface (GCE) is developed for the preparation of a novel electrochemiluminescence sensor. First of all, the positively charged Ru(bpy)32+ is modified on the surface of negatively charged gold nanoparticles (nano-Au) via the electrostatic interactions to obtain the Ru(bpy)32+/nano-Au nano-sphere (abbreviate as Ru-AuNPs). Subsequently, the large amount of Ru-AuNPs are immobilized on the multi-wall carbon nanotubes (MWCNTs)-Nafion homogeneous composite coated GCE by dual interaction: firstly, the Nafion, a kind of typical cation-exchange membrane, can absorb the Ru-AuNPs as the enrichment of cation Ru(bpy)32+ on the Ru-AuNPs surface; secondly, the employment of carboxylic MWCNTs in the Nafion film can also chemosorb the Ru(bpy)32+ cation on the Ru-AuNPs surface to increase the carrier content. At the same time, the experiment confirms that the enhancement of the ECL intensity on the sensor is attributed to following reasons. One hand, the employment of MWCNTs in the Nafion film enlarged the electro-active surface areas to benefit the contact between the signal probe on the composite film and coreactant used as reinforcing agent. On the other hand, the nano-materials of MWCNTs and nano-Au also improve the conductivity of the assembled film to increase the quantity of excited state of Ru(bpy)32+ in the unit time under the electrochemical condition and finally cause better properties in luminescence. In the experiment, the influence of the coreactant tripropylamine (TPA) on proposed ECL sensor is investigated. The logarithm of ECL intensity is proportional to the logarithm of TPA concentration on the range of 4 × 10−10 M to 2.8 × 10−6 M and 2.8 × 10−6 M to 0.71 × 10−3 M. After optimizing these conditions, the ECL sensor with TPA as coreactant is employed to detect a kind of alkaloid medicine, Matrine, for evaluating the practical application in the medicine analysis. The present sensor with TPA as coreactant shows the good response to the medicine concentration of the Matrine from 2.0 × 10−6 M to 6.0 × 10−3 M, which is used to detect the Matrine concentration in the Matrine injection.  相似文献   

20.
Yongjin Zou  Lixian Sun  Fen Xu 《Talanta》2007,72(2):437-442
A Prussian Blue (PB)/polyaniline (PANI)/multi-walled carbon nanotubes (MWNTs) composite film was fabricated by step-by-step electrodeposition on glassy carbon electrode (GCE). The electrode prepared exhibits enhanced electrocatalytic behavior and good stability for detection of H2O2 at an applied potential of 0.0 V. The effects of MWNTs thickness, electrodeposition time of PANI and rotating rate on the current response of the composite modified electrode toward H2O2 were optimized to obtain the maximal sensitivity. A linear range from 8 × 10−9 to 5 × 10−6 M for H2O2 detection has been observed at the PB/PANI/MWNTs modified GCE with a correlation coefficient of 0.997. The detection limit is 5 × 10−9 M on signal-to-noise ratio of 3. To the best of our knowledge, this is the lowest detection limit for H2O2 detection. The electrode also shows high sensitivity (526.43 μA μM−1 cm−2) for H2O2 detection which is more than three orders of magnitude higher than the reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号