首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
The paper deals with the concept of simple automated creation of gradient profile of the mobile phase for gradient-elution sequential injection chromatography (GE-SIC). The feasibility and merits of this concept are demonstrated on the separation and simultaneous assay of indomethacin as active principle and of its two degradation products (5-methoxy-2-methylindoleacetic acid and 4-chloro-benzoic acid) in a topical pharmaceutical formulation.The GE-SIC separation was performed with a FIAlab® 3000 SIC set-up (USA) equipped with an Onyx™ Monolithic C18 (25 mm × 4.6 mm, Phenomenex®) column, a six-port selection valve, a 5-mL syringe pump and a fiber-optics UV CCD detector. Ketoprofen was used as an internal standard (IS). The gradient elution was achieved by automated reproducible mixing of acetonitrile and aqueous 0.2% phosphoric acid in the holding coil of the SIC system. Different profiles of the gradient elution were tested. The optimal gradient using two mobile phases 30:70 and 50:50 of acetonitrile/0.2% phosphoric acid (v/v) was achieved under the optimum flow rate 1.2 mL min−1. The chromatographic resolution R between the peaks of all solutes (including the IS) was >2.00. The repeatability of retention times was characterized by the RSD values 0.18-0.30% (n = 6). Net separation time was 3.5 min and the mobile phase consumption was 4.5 mL for a single GE-SIC assay. The figures of merit of the novel GE-SIC method compared well with those of conventional HPLC.  相似文献   

2.
The UHPLC strategy which combines sub-2 μm porous particles and ultra-high pressure (>1000 bar) was investigated considering very high resolution criteria in both isocratic and gradient modes, with mobile phase temperatures between 30 and 90 °C. In isocratic mode, experimental conditions to reach the maximal efficiency were determined using the kinetic plot representation for ΔPmax = 1000 bar. It has been first confirmed that the molecular weight of the compounds (MW) was a critical parameter which should be considered in the construction of such curves. With a MW around 1000 g mol−1, efficiencies as high as 300,000 plates could be theoretically attained using UHPLC at 30 °C. By limiting the column length to 450 mm, the maximal plate count was around 100,000. In gradient mode, the longest column does not provide the maximal peak capacity for a given analysis time in UHPLC. This was attributed to the fact that peak capacity is not only related to the plate number but also to column dead time. Therefore, a compromise should be found and a 150 mm column should be preferentially selected for gradient lengths up to 60 min at 30 °C, while the columns coupled in series (3× 150 mm) were attractive only for tgrad > 250 min. Compared to 30 °C, peak capacities were increased by about 20–30% for a constant gradient length at 90 °C and gradient time decreased by 2-fold for an identical peak capacity.  相似文献   

3.
A fast ion chromatographic system is described which uses shorter column lengths and compares various eluent profiles in order to maximise the performance without sacrificing the chromatographic resolution. Both isocratic and gradient elution profiles were considered to find the most efficient mode of separation. The separation and determination of seven target anions (chloride, chlorate, nitrate, chromate, sulfate, thiocyanate and perchlorate) was achieved using a short (4 mm ID, 50 mm long) column packed with Dionex AS20 high-capacity anion exchange material. A hydroxide eluent was used at an initial concentration of 25 mM (at a flow-rate of 1.0 mL/min) and two performance maxima were found. The maximum efficiency occurred at a normalised gradient ramp rate of 5 mM/t0, resulting in a peak capacity of 16, while the fastest separation (<3 min) occurred at a normalised ramp rate of 30 mM/t0. The retention time, peak width and resolution using the different eluent profiles on varying column lengths is also compared. Further investigations in this study determined that the highest peak capacity separation under gradient conditions could be approximated using an isocratic separation. The advantage of using this novel approach to approximate the maximum efficiency separation removes the need for column re-equilibration that is required for gradient elution resulting in faster analyses and enhanced sample throughput, with benefits in particular for multidimensional chromatography.  相似文献   

4.
The retention behaviour of selenites (Se(IV)), selenates (Se(VI)), seleno-dl-methionine (Se-Met), selenocystine (Se-Cyst), selenocystamine (Se-CM) and selenourea (Se-U) was investigated using a Discovery end-capped reversed-phase column as stationary phase and different mobile phase conditions. Extrapolated to 100% aqueous mobile phase retention factors (log kw) of the investigated Se species, determined using different methanol fractions (φ) as organic modifier, were compared with the corresponding actual values. The proper operation of this column even at 100% aqueous phase proved to be valuable for the accurate determination of log kw values of Se-CM and Se-Cyst, presenting a convex curvature log k = f(φ) at low MeOH fractions, often neglected in the extrapolation procedure. The effect of the presence of n-decylamine as well as saturation of the mobile phase with n-octanol was also studied. For ampholytic Se-Met and Se-Cyst the effect of n-decylamine in retention reflected the predominance of zwitterionic nature in the case of Se-Met in contrary to the non-zwitterionic species found in the case of Se-Cyst, in accordance with our previous findings concerning partitioning experiments in the n-octanol/water system. Finally, an attempt was made to correlate log kw values with the logarithm of n-octanol/water distribution coefficient, log D, of the investigated Se species and an indicative log D value of Se-U was derived.  相似文献   

5.
This work presents novel approach in low-pressure chromatography flow systems—two-column Sequential Injection Chromatography (2-C SIC) and its comparison with gradient elution chromatography on the same instrument. The system was equipped with two different chromatographic columns (connected to selection valve in parallel design) for isocratic separation and determination of all components in composed anti-inflammatory pharmaceutical preparation (tablets). The sample was first injected on the first column of length 30 mm where less retained analytes were separated and then the sample was injected on the second column of length 10 mm where more retained analytes were separated. The SIC system was based on a commercial SIChrom™ manifold (8-port high-pressure selection valve and medium-pressure syringe pump with 4 mL reservoir) (FIAlab®, USA) with two commercially available monolithic columns the “first column” Chromolith® Flash RP-18e (25 mm × 4.6 mm i.d. with guard column 5 mm × 4.6 mm i.d.) and the “second column” Chromolith® RP-18e (10 mm × 4.6 mm i.d.) and CCD UV-vis detector USB 4000 with micro-volume 1.0 cm Z flow cell. Two mobile phases were used for analysis (one for each column). The mobile phase 1 used for elution of paracetamol, caffeine and salicylic acid (internal standard) was acetonitrile/water (10:90, v/v, the water part of pH 3.5 adjusted with acetic acid), flow rate was 0.9 mL min−1 (volume 3.0 mL of mobile phase per analysis). The mobile phase 2 used for elution of propyphenazone was acetonitrile/water (30:70, v/v); flow rate was 1.2 mL min−1 (volume 1.5 mL of mobile phase per analysis). Absorbance was monitored at 210 nm. Samples were prepared by dissolving of one tablet in 30% acetonitrile and 10 μL of filtered supernatant was injected on each column (2 × 10 μL). The chromatographic resolution between all compounds was >1.45 and analysis time was 5.5 min under the optimal conditions. Limits of detection were determined at 0.4 μg mL−1 for paracetamol, at 0.5 μg mL−1 for caffeine and at 0.7 μg mL−1 for propyphenazone. The new two-column chromatographic set-up developed as an alternative approach to gradient elution chromatography shows evident advantages (time and solvent reduction more than one-third) as compared with single-column gradient SIC method with Chromolith® Flash RP-18 (25 mm × 4.6 mm i.d. with guard column 5 mm × 4.6 mm i.d.).  相似文献   

6.
In this work, the enantioseparations of 1,1′-bi-2-naphthol (BINOL) and its three derivatives were performed on an immobilized polysaccharide-based chiral stationary phase, Chiralpak IA, under normal-phase mode. The effects of the content of polar modifier in the mobile phase and the column temperature on the retention and enantioseparation were investigated in detail. Temperature-induced inversion of elution order for BINOL was observed directly when n-hexane/2-propanol (92/8, v/v) was used as mobile phase. The isoenantioselective temperature (Tiso) was calculated to be 31.4 °C. When n-hexane/2-propanol/THF (93/2/5, v/v/v) was used as mobile phase, the Tiso value decreased to −8.2 °C. Entropically driven enantioseparation which had practical application was obtained successfully (separation factor being 1.189 and 1.332 at 25 °C and 50 °C, respectively). The corresponding thermodynamic parameters for other three binaphthyl compounds were compared with that for BINOL. Some inferences about chiral recognition mechanism were stressed.  相似文献   

7.
Strongly polar phenolic acids are weakly retained and often poorly separated in reversed-phase (RP) liquid chromatography. We prepared zwitterionic polymethacrylate monolithic columns for micro-HPLC by in situ co-polymerization in fused-silica capillaries. The capillary monolithic columns prepared under optimized polymerization conditions show some similarities with the conventional particulate commercial ZIC-HILIC silica-based columns, however have higher retention and better separation selectivity under reversed-phase conditions, so that they can be employed for dual-mode HILIC-RP separations of phenolic acids on a single column. The capillary polymethacrylate monolithic sulfobetaine columns show excellent thermal stability and improved performance at temperatures 60–80 °C. The effects of the operation conditions on separation were investigated, including the type and the concentration of the organic solvent in the aqueous-organic mobile phase (acetonitrile and methanol), the ionic strength of the acetate buffer and temperature. While the retention in the RP mode decreases at higher temperatures in mobile phases with relatively low concentrations of acetonitrile, it is almost independent of temperature at HILIC conditions in highly organic mobile phases. The best separation efficiency can be achieved using relatively high acetate buffer ionic strength (20–30 mmol L−1) and gradient elution with alternately increasing (HILIC mode) and decreasing (RP mode) concentration of aqueous buffer in aqueous acetonitrile. Applications of the monolithic sulfobetaine capillary columns in alternating HILIC-RP modes are demonstrated on the analysis of phenolic acids in a beer sample.  相似文献   

8.
The effects of particle size and thermal insulation on retention and efficiency in packed-column supercritical fluid chromatography with large pressure drops are described for the separation of a series of model n-alkane solutes. The columns were 2.0 mm i.d. × 150 mm long and were packed with 3, 5, or 10-μm porous octylsilica particles. Separations were performed with pure carbon dioxide at 50 °C at average mobile phase densities of 0.47 g/mL (107 bar) and 0.70 g/mL (151 bar). The three principal causes of band broadening were the normal dispersion processes described by the van Deemter equation, changes in the retention factor due to the axial density gradient, and radial temperature gradients associated with expansion of the mobile phase. At the lower density the use of thermal insulation resulted in significant improvements in efficiency and decreased retention times at large pressure drops. The effects are attributed to the elimination of radial temperature gradients and the concurrent enhancement of the axial temperature gradient. Thermal insulation had no significant effect on chromatographic performance at the higher density. A simple expression to predict the onset of excess efficiency loss due to the radial temperature gradient is proposed.  相似文献   

9.
The retention of paracetamol, propyphenazone, caffeine, phenobarbital, and codeine phosphate, which are the components of the new medicine Pentalgin, was studied by reversed-phase high-performance liquid chromatography on a column (150 × 3.9 mm) filled with the Symmetry C18 sorbent (5.0 μm) in the gradient elution mode and on a column (150 × 3.9 mm) filled with the Nova-Pak CN HP sorbent (4.0 μm) as a function of the profile and composition of the gradient and as a function of the concentrations of acetonitrile and KH2PO4 and the pH of the mobile phase, respectively, with detection at 212 nm. The optimum composition of the mobile phase was selected. The time of separation was 16 and 11 min for the gradient and isocratic elution modes, respectively. The procedures were used for the analysis of a preproduction sample of the tablets. The procedures provide accurate and reproducible results of analysis; however, the isocratic version is preferable for mass production control as a technically simpler technique.  相似文献   

10.
11.
Ali I  Gupta VK  Singh P  Pant HV 《Talanta》2006,68(3):928-931
Domperidone is a dopamine D2 receptor antogonist, which has been used as antiemetic agent in human beings. It has been found in wastewater released by some pharmaceutical industries leading to the contamination of surface and ground water. Therefore, a sensitive, inexpensive and reproducible HPLC-SPE method was developed for the analysis of domperidone in the wastewater. The column used was Waters symmetry C18 (15 cm × 0.46 mm, 5 μm). The mobile phase used was phosphate buffer (50 mM, pH 3.5) acetonitrile (80:20, v/v) at the flow rate 2.0 mL/min. The detection was achieved by using UV mode at 230 nm. The retention, separation and resolution factors were 2.63, 3.00 and 3.20, respectively. The percentage recovery of domperidone from wastewater was 95.0%. Celiprolol was used as the internal standard to access the percentage extraction of domperidone from wastewater.  相似文献   

12.
In this study, high-efficiency LC–MS/MS separations of complex proteolytic digests are demonstrated using 50 mm, 250 mm, and 1 m long poly(styrene-co-divinylbenzene) monolithic capillary columns. The chromatographic performance of the 50 and 250 mm monoliths was compared at the same gradient steepness for gradient durations between 5 and 150 min. The maximum peak capacity of 400 obtained with a 50 mm column, increased to 485 when using the 250 mm long column and scaling the gradient duration according column length. With a 5-fold increase in column length only a 20% increase in peak capacity was observed, which could be explained by the larger macropore size of the 250 mm long monolith. When taking into account the total analysis time, including the dwell time, gradient time and column equilibration time, the 50 mm long monolith yielded better peptide separations than the 250 mm long monolithic column for gradient times below 80 min (nc = 370). For more demanding separation the 250 mm long monolith provided the highest peak production rate and consequently higher sequence coverage. For the analysis of a proteolytic digest of Escherichia coli proteins a monolithic capillary column of 1 m in length was used, yielding a peak capacity of 1038 when applying a 600 min gradient.  相似文献   

13.
14.
Suárez R  Miró M  Cerdà V  Perdomo JA  Galmés J 《Talanta》2011,84(5):1259-1266
In this work, a miniaturized, completely enclosed multisyringe-flow system is proposed for high-throughput purification of RuBisCO from Triticum aestivum extracts. The automated method capitalizes on the uptake of the target protein at 4 °C onto Q-Sepharose Fast Flow strong anion-exchanger packed in a cylindrical microcolumn (105 × 4 mm) followed by a stepwise ionic-strength gradient elution (0-0.8 mol/L NaCl) to eliminate concomitant extract components and retrieve highly purified RuBisCO. The manifold is furnished downstream with a flow-through diode-array UV/vis spectrophotometer for real-time monitoring of the column effluent at the protein-specific wavelength of 280 nm to detect the elution of RuBisCO. Quantitation of RuBisCO and total soluble proteins in the eluate fractions were undertaken using polyacrylamide gel electrophoresis (PAGE) and the spectrophotometric Bradford assay, respectively. A comprehensive investigation of the effect of distinct concentration gradients on the isolation of RuBisCO and experimental conditions (namely, type of resin, column dimensions and mobile-phase flow rate) upon column capacity and analyte breakthrough was effected. The assembled set-up was aimed to critically ascertain the efficiency of preliminary batchwise pre-treatments of crude plant extracts (viz., polyethylenglycol (PEG) precipitation, ammonium sulphate precipitation and sucrose gradient centrifugation) in terms of RuBisCO purification and absolute recovery prior to automated anion-exchange column separation. Under the optimum physical and chemical conditions, the flow-through column system is able to admit crude plant extracts and gives rise to RuBisCO purification yields better than 75%, which might be increased up to 96 ± 9% with a prior PEG fractionation followed by sucrose gradient step.  相似文献   

15.
In this work, a novel polymer-based monolithic column was prepared using an o-phthalaldehyde-l-phenylalanine Schiff base complex as the reactive center and a mixture of methanol and n-propanol as the porogen. The monolithic column was employed for the separation of a metal ion mixture including Pb(II), Mn(II), Cu(II), Ni(II), Cr(III), Fe(III) and Cr(VI). Tetrabutylammonium bromide (TBAB) was used as a mobile phase additive to enhance the separation efficiency of metal ions by EDTA precomplexation. Using a phosphate buffer (20 mM, pH 3.0), TBAB (10 mM), MeOH (15%, v/v), an applied voltage of −15 kV, and detection at 220 nm, the metal ion mixture was satisfactorily resolved. The average theoretical plate number was 17,900 plates/m. The separation was also carried out in the absence of TBAB, leading to dissimilar elution order and shorter retention time. The separation behavior of the monolithic column was also compared with that of the blank polymer. The unique properties of the monolithic column might be mediated by a combination of electrophoretic behavior and chromatographic retention involving hydrophobic and hydrophilic interactions, as well as ligand exchange.  相似文献   

16.
The addition of the homologous series of perfluorinated acids-trifluoroacetic acid (TFAA), pentafluoropropionic acid (PFPA), heptafluorobutyric acid (HFBA) to mobile phases for reversed-phase high-performance liquid chromatography (RP-HPLC) of β-blockers was tested. Acidic modifiers were responsible for acidification of mobile phase (pH 3) ensuring the protonation of the β-blockers and further ion pairs creation. The effect of the type and concentration of mobile phase additives on retention parameters, the efficiency of the peaks, their symmetry and separation selectivity of the β-blockers mixture were all studied. It appeared that at increasing acid concentration, the retention factor, for all compounds investigated, increased to varying degrees. It should be stressed that the presence of acids more significantly affected the retention of the most hydrophobic β-blockers. Differences in hydrophobicity of drugs can be maximized through variation of the hydrophobicity of additives. Thus, the relative increase in the retention depends on either concentration and hydrophobicity of the anionic mobile phase additive or hydrophobicity of analytes. According to QSRR (quantitative structure retention relationship) methodology, chromatographic lipophilicity parameters: isocratic log k and log kw values (extrapolated retention to pure water) were correlated with the molecular (log Po/w) and apparent (log Papp) octanol–water partition coefficients obtained experimentally by countercurrent chromatography (CCC) or predicted by Pallas software. The obtained, satisfactory retention-hydrophobicity correlations indicate that, in the case of the basic drugs examined in RP-HPLC systems modified with perfluorinated acids, the retention is mainly governed by their hydrophobicity.  相似文献   

17.
This study investigates lipophilicity determination by chromatographic measurements using the polar embedded Ascentis RP-Amide stationary phase. As a new generation of amide-functionalized silica stationary phase, the Ascentis RP-Amide column is evaluated as a possible substitution to the n  -octanol/water partitioning system for lipophilicity measurements. For this evaluation, extrapolated retention factors, log kwlogkw, of a set of diverse compounds were determined using different methanol contents in the mobile phase. The use of n-octanol enriched mobile phase enhances the relationship between the slope (S  ) of the extrapolation lines and the extrapolated log kwlogkw (the intercept of the extrapolation), as well as the correlation between log P   values and the extrapolated log kwlogkw (1:1 correlation, r2 = 0.966). In addition, the use of isocratic retention factors, at 40% methanol in the mobile phase, provides a rapid tool for lipophilicity determination. The intermolecular interactions that contribute to the retention process in the Ascentis RP-Amide phase are characterized using the solvation parameter model of Abraham. The LSER system constants for the column are very similar to the LSER constants of the n-octanol/water extraction system. Tanaka radar plots are used for quick visual comparison of the system constants of the Ascentis RP-Amide column and the n-octanol/water extraction system. The results all indicate that the Ascentis RP-Amide stationary phase can provide reliable lipophilic data.  相似文献   

18.
A new method for the fixation of polymethacrylate monoliths within titanium tubing of up to 0.8 mm I.D. for use as a chromatographic column under elevated temperatures and pressures is described. The preparation of butyl methacrylate–ethylene dimethacrylate-based monolithic stationary phases with desired porous structures was achieved within titanium tubing with pre-oxidised internal walls. The oxidised titanium surface was subsequently silanised with 3-trimethoxysilylpropyl methacrylate resulting in tight bonding of butyl methacrylate porous monolith to the internal walls, providing stationary phase stability at column temperatures up to 110 °C and at operating column pressure drops of >28 MPa. The titanium housed monoliths exhibited a uniform and dense porous structure, which provided peak efficiencies of up to 59,000 theoretical plates per meter when evaluated for the separation of small molecules in reversed-phase mode, under optimal conditions (achieved at 15 μL/min and temperature of 110 °C for naphthalene with a retention factor, k = 0.58). The developed column was applied to the reversed-phase isocratic separation of a text mixture of pesticides.  相似文献   

19.
Anion-exchange (AEX) columns were prepared by on-column polymerization of acrylates and methacrylates containing tertiary amino or quaternary ammonium groups on monolithic silica in a fused silica capillary modified with anchor groups. The columns provided a plate height (H) of less than 10 μm at optimum linear velocity (u) with keeping their high permeability (K = 9–12 × 10−14 m2). Among seven kinds of AEX columns, a monolithic silica column modified with poly(2-hydroxy-3-(4-methylpiperazin-1-yl)propyl methacrylates) (HMPMA) showed larger retentions and better selectivities for nucleotides and inorganic anions than the others. The HMPMA column of 410 mm length produced 42 000–55 000 theoretical plates (N) at a linear velocity of 0.97 mm/s with a backpressure of 3.8 MPa. The same column could be employed for a fast separation of inorganic anions in 1.8 min at a linear velocity of 5.3 mm/s with a backpressure of 20 MPa. In terms of van Deemter plot and separation impedance, the HMPMA column showed higher performance than a conventional particle-packed AEX column. The HMPMA column showed good recovery of a protein, trypsin inhibitor, and it was applied to the separation of proteins and tryptic digest of bovine serum albumin (BSA) in a gradient elution, to provide better separation compared to a conventional particle-packed AEX column.  相似文献   

20.
Twenty nine phenolic compounds comprising nine phenolic acids, sixteen flavonoids (including eight tea catechins, glycosides and aglycones), four coumarins plus caffeine were analysed within 20 min using ultra high performance liquid chromatography (UHPLC) with PDA detection. UHPLC system was equipped with C18 analytical column (100 mm × 2.1 mm, 1.7 μm), utilising 0.1% formic acid and methanol mobile phase in the gradient elution mode. The developed method was tested for the system suitability: resolution, asymmetry factor, peak capacity, retention time repeatability and peak area repeatability. The method was fully validated in the terms of linearity (r2 > 0.9990 for all 30 compounds), range (typically 1-100 mg L−1), LOD, LOQ, inter/intra-day precision (<3% and <9% respectively) and inter/intra-day accuracy (typically 100 ± 10%). Subsequently the method was applied to the identification (spectral information and peak purity calculations were profited) and quantification of phenolic compounds and caffeine present in tea infusions and extracts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号