首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zhong H  Li N  Zhao F  Li KA 《Talanta》2004,62(1):37-42
A new protein determination method by enhanced Rayleigh light scattering (RLS) technique has been developed. In acid condition (pH=3.60), RLS of 1,2-dihydroxyanthraquinone-3-sulfonate (Alizarin Red S) can be greatly enhanced by addition of proteins, resulting in two characteristic peaks, 360 and 505 nm, respectively. The new protein assay is based on the RLS enhancement and spectrum change. The optimum condition for the reaction was investigated. The linear range is 0.20-24.9 μg ml−1 for BSA and 0.20-15.5 μg ml−1 for HSA. The detection limits (S/N=3) are 9.59 ng ml−1 for BSA and 9.51 ng ml−1 for HSA. The results of determination for human serum samples were comparable to those obtained by Bradford method. The binding stoichiometry was determined.  相似文献   

2.
This paper researched the determination of proteins with 2-(2-arsonophehenylazo)-7-[(2,6-dibromo-4-sulfophenylazo)-1,8-dihydroxynaphthalene-3,6-disulfonic acid (Arsenazo-DBS) by Rayleigh light-scattering (RLS). The reaction parameters, such as acidity, volume of buffer solution and concentration of Arsenazo-DBS, were examined by orthogonal array design (OAD). Under optimal conditions, the weak RLS of Arsenazo-DBS and BSA can be enhanced greatly and two enhanced RLS signals were produced at 340-350 and 400-420 nm. Based on this reaction, a new quantitative determination method for proteins has been developed. This method is proved to be very sensitive (the determination limits are 0.077 μg ml−1 for bovine serum albumen (BSA) and 0.074 μg ml−1 for human serum albumen (HSA)), rapid (<2 min), simple (one step) and tolerance of most interfering substances. The effects of different surfactants were also examined. The amount of proteins in human serum samples was determined and the maximum relative error was no more than 2% and the recovery was between 95 and 105%.  相似文献   

3.
Ellagic acid (EA) reacted with Gemini zwitterionic surfactant, phosphodiesters quaternary ammonium salt (PQAS), and formed fine particles which produced strong enhancement in intensity of resonance light scattering (RLS). The effects of several factors on the RLS signal, such as pH, ionic strength, PQAS concentration and so on, were optimized. The relationship between enhanced RLS intensity and EA concentration was constructed. A novel and rapid method for the determination of EA was built. The linear range of this method was 0.016-4.0 μg mL−1 and the detection limit was 13.9 ng mL−1. Under the optimum conditions, the proposed method was applied to determine EA in body fluids with the results of quantitative recoveries between 98.4-101.4% in human serum samples and 99.1-102% in human urine samples. This method characterized by low limit detection is very sensitive and the cost is low, and constitutes a fast one-step procedure which requires only measuring the RLS intensities. The mechanism of the reaction was also studied. This investigation could contribute to the research on the delivery and release of bioactive molecules by Gemini surfactants.  相似文献   

4.
Yongqiang Cheng  Yuqin Su 《Talanta》2007,71(4):1757-1761
A novel assay of DNA has been proposed by using ferric nanoparticles as probes coupled with resonance light scattering (RLS) detection. At pH 7.40, the RLS intensity of ferric nanoparticles can be greatly enhanced by the aggregation of positively charged ferric nanoparticles through electrostatic interaction with negatively charged DNA. The enhanced intensity of RLS at 452 nm is proportional to the concentration of DNA in the range of 0.01-0.8 μg ml−1 for calf thymus and salmon sperm DNA and in the range of 0.005-0.3 μg ml−1 for E. coli K12 genomic DNA. Detection limits are 3.6 ng ml−1 for calf thymus DNA, 4.4 ng ml−1 for salmon sperm DNA, and 1.9 ng ml−1 for E. coli K12 genomic DNA, respectively. Compared with the chromophores previously used in RLS assay, the ferric nanoparticles have offered several advantages in easy preparation, good photostability and high sensitivity without being modified or functionalized.  相似文献   

5.
Wang LY  Wang L  Dong L  Hu YL  Xia TT  Chen HQ  Li L  Zhu CQ 《Talanta》2004,62(2):237-240
A novel assay of γ-globulin (γ-IgG) with a sensitivity at the nanogram level is proposed based on the measurement of enhanced resonance light-scattering (RLS) signals resulting from the interaction of functionalized nano-HgS with γ-globulin. At pH 5.03, the RLS signals of functionalized nano-HgS were greatly enhanced by γ-globulin in the region of 200-700 nm characterized by the peak around 362 nm. Linear relationship can be established between the enhanced RLS intensity and γ-globulin concentration in the range of 10-140 ng ml−1. The limit of detection is 2.71 ng ml−1. Based on this, a new direct quantitative determination method for γ-globulin in blood serum samples without separation of human serum albumin (HSA) is established. The contents of γ-IgG in blood serum samples were determined with recovery of 95.7-102.5% and R.S.D. of 1.6-2.4%. This method is proved to be very sensitive, rapid, simple and tolerance of most interfering substances.  相似文献   

6.
A novel histidine-selective method has been developed for the determination of histidine in aqueous solutions by resonance light scattering (RLS) technique. At pH 8.0, the weak RLS intensity of tetraphenylporphyrin manganese (III) chloride [MnTPPCl] was greatly enhanced by the addition of histidine with the maximum peak located at 483 nm. Under the optimum conditions, it was found that the enhanced RLS intensity was in proportion to the concentration of histidine in the range 7.8 × 10−7-2.4 × 10−5 mol l−1. Low detection limit of 9.2 × 10-8 mol l−1 has been achieved. The histidine concentrations in synthetic samples and real samples were determined with satisfactory results. The sensitivity and selectivity of this method are high enough to permit the determination of trace amounts of histidine without any significant interference from high levels of other components such as common anions and especially, other amino acids.  相似文献   

7.
Based on the measurements of molecular absorption and resonance light scattering (RLS), the aggregation of Azur B (AB) was in a medium of pH ranging from 1.98 to 2.56 and ionic strength <0.12 M. The presence of double stranded DNA prompts the aggregation, resulting in enhanced RLS signals. Linear relationships were achieved between the enhanced RLS intensity at 359.7 nm and DNA concentration in the range of 0-4.5 μg ml−1 for both calf thymus DNA (ctDNA) and fish sperm DNA (fsDNA) if 3.0×10−5 M AB was employed. The 3σ limits of detection were 9.3 and 8.9 ng ml−1 for ctDNA and fsDNA, respectively. Five synthetic samples were analysed satisfactorily.  相似文献   

8.
Zhao HW  Huang CZ  Li YF 《Talanta》2006,70(3):609-614
A sensitive, highly specific immunoassay method has been developed by measuring the enhanced resonance light scattering (RLS) signals of immunoreactions with simultaneously scanning both the excitation and the emission monochromators of a common spectrofluorometer. For a given content of antibody (Ab), the RLS signals of an immunoreaction follow Gaussian distribution with antigen (Ag) concentration. The central position of the Gaussian curve represents the concentration of given Ab, and the half bandwidth has proved to be a characteristic constant of a given Ab-Ag immunoreaction. With the RLS signals, the limit of detection for human immunoglobulin G (HIgG) in serum samples could reach 10 ng ml−1, and the concentration of HIgG in blood serum samples could be detected with the recovery of 90.2-107.7% and R.S.D. of 0.8-2.7%. The results of determination for three human serum samples are identical to those obtained by immunoturbidimetry.  相似文献   

9.
A backscattering light (BSL) detection assembly is constructed and applied to the determination of nucleic acids with high sensitivity and selectivity based on the measurements of BSL signals at water/tetrachloromethane (H2O/CCl4) interface. In aqueous medium of pH 3, the binary complex of of Al(III)-DNAs could be formed by the interaction of Al(III) with the phosphate group of DNAs, which then could interact with tetraphenylporphyrin (TPP) in tetrachloromethane through liquid/liquid interaction, forming a ternary complex of TPP-Al(III)-DNAs at the interface. It was observed that greatly enhanced BSL signals occurred with maximum peak at 469 nm when the ternary complex of TPP-Al(III)-DNAs were absorbed to the liquid/liquid interface. The enhanced backscattering light intensity (IBSL) is in proportion to the concentration of calf thymus DNA (ctDNA) and fish sperm DNA (fsDNA) in the range of 0.6-1200 ng ml−1 and 1.1-1200 ng ml−1, respectively. The limits of determination (3σ) are 60 pg ml−1 and 110 pg ml−1, correspondingly. Artificial samples with highly interference backgrounds were determined with the recovery ranging from 94.5 to 106.7%, and relative standard deviation (R.S.D.) less than 2.40%.  相似文献   

10.
Yang XF  Li H 《Talanta》2004,64(2):478-483
A novel flow-injection chemiluminescence (CL) method for the determination of dihydralazine sulfate (DHZS) is described. The method is based on the reaction between DHZS and hexacyanoferrate(III) in alkaline solution to give weak CL signal, which is dramatically enhanced by eosin Y. The CL emission allows quantitation of DHZS concentration in the range 0.02-2.8 μg ml−1 with a detection limit (3σ) of 0.012 μg ml−1. The experimental conditions for the CL reaction are optimized and the possible reaction mechanism is discussed. The method has been applied to the determination of DHZS in pharmaceutical preparations and compared well with the high performance liquid chromatography (HPLC) method.  相似文献   

11.
We describe the preparation and characterization of functionalized nano-PbS. The functionalized nanoparticles are water-soluble. Reaction of mercaptoacetic acid functionalized nano-PbS with γ-globulin (γ-IgG) results in an enhanced resonance light scattering (RLS) at 385 nm. Based on this, a new direct quantitative method for γ-globulin in blood serum samples without separation of human serum albumin is established. Under optimal conditions, the enhanced RLS intensity is in proportion to the γ-IgG concentration in the range 10-500 ng ml−1. The 3σ limit of detection is 2.75 ng ml−1. The contents of γ-IgG in blood serum samples were determined with a recovery of 97-104% and R.S.D. of 1.5-2.1% (n=6). This method proved to be very sensitive, rapid, simple and tolerant of most interfering substances.  相似文献   

12.
Dai XX  Li YF  He W  Long YF  Huang CZ 《Talanta》2006,70(3):578-583
A dual-wavelength resonance lighting scattering (DW-RLS) ratiometry is developed to detect anion biopolymer based on their bindings with cation surfactant. Using the interaction of Hyamine 1622 (HM) with fish sperm DNA (fsDNA) as an example, a dual-wavelength resonance light scattering (DW-RLS) ratiometric method of DNA was constructed. In Britton-Robinson buffer controlled medium, fish sperm DNA (fsDNA) could interact with Hyamine 1622 (HM), displaying significantly enhanced RLS signals. By measuring the RLS signals characterized at 300.0 nm (I300.0) and the RLS intensity ratio (I276.0/I294.0), respectively, fsDNA over a wide dynamic range of content could be detected. Typically, when HM concentration is kept at 6.0 × 10−5 mol l−1, using I300.0 could detect fsDNA over the range of 50-2000 ng ml−1 with the limit of 3.0 ng ml−1, while using I276.0/I294.0 could detect fsDNA over the range of 0.5-2500 ng ml−1 with the limit of 0.05 ng ml−1. Thus the latter so-called DW-RLS ratiometry is obviously superior to the former one. Based on the measurements of I300.0 and I276.0/I294.0 data, a Scatchard plot concerning the interaction between HM and fsDNA could be constructed and thus the binding number (n) and binding constant (K) could be available with the values of 13.5 and 1.35 × 105 mol−1 l, and 11.9 and 1.65 × 105 mol−1 l, respectively.  相似文献   

13.
This is the first report of the determination of aniline with tetra-substituted amino aluminium phthalocyanine (TAAlPc) by a fluorimetric method. In KBr-HCl solution, nitrite ion diazotizes TAAlPc, thus, the fluorescence of TAAlPc is dramatically quenched. However, there is less quenching in the presence of aniline and the recovery in fluorescence intensity is linear with the concentration of aniline. Based on this, a novel method has been developed for the determination of aniline in aqueous solutions. Under the optimal conditions, the calibration graph for aniline is from 5 to 300 ng ml−1 with a 3σ limit of detection of 1.8 ng ml−1. The relative standard deviation for nine replicate measurements of 100 ng ml−1 aniline is 1.7%. The method was applied to the analysis of water samples with satisfactory results.  相似文献   

14.
A high sensitive flow-injection chemiluminescence method for determination of calf thymus DNA and herring sperm DNA has been developed. The method is based on the chemiluminescence reaction of Rhodamine B-cerium(IV)-thermally denatured DNAs in sulfuric acid media. The proposed procedure allows quantitation of DNAs in the range 2.6×10−5 to 0.26 μg ml−1 for calf thymus DNA and 5.0×10−8 to 5.0×10−5 μg ml−1 for herring sperm DNA with correlation coefficients 0.9998 and 0.9996 (both n=11), respectively. The detection limits (3σ) are 6.5×10−6 μg ml−1 for calf thymus DNA and 4.3×10−8 μg ml−1 for herring sperm DNA. The possible mechanism of chemiluminescence in the system is discussed.  相似文献   

15.
A simple chemiluminometric method using flow injection has been developed for the determination of paracetamol (acetaminophen), based on the chemiluminescence produced by the reduction of tris(2,2′-bipyridyl)ruthenium(III). The latter is obtained by oxidation of tris(2,2′-bipyridyl)ruthenium(II) by potassium permanganate in dilute sulphuric acid in the presence of paracetamol. A standard or sample solution was injected into the ruthenium(II) stream (flow rate 1.5 ml min−1) which was then merged with potassium permanganate in dilute sulphuric acid stream (flow rate 0.5 ml min−1). The chemiluminescence intensity is enhanced by the presence of manganese(II) ions. Under the optimum conditions, a linear calibration graph was obtained over the range of 0.3-50.0 μg ml−1 and the detection limit was 0.2 μg ml−1 (s/n = 3). The relative standard deviation of the proposed method calculated from 20 replicate injections of 5.0 μg ml−1 paracetamol was 1.1%. The sample throughput was 90 h−1. The method was successfully applied to the determination of paracetamol in commercial pharmaceutical formulations.  相似文献   

16.
Wang Z  Zhang Z  Fu Z  Luo W  Zhang X 《Talanta》2004,62(3):611-617
A novel and sensitive chemiluminescence (CL) method for the determination of aminomethylbenzoic acid and aminophylline coupled with flow-injection analysis (FIA) technique is developed in this paper. It is based on the inhibition effect of the studied drugs on the chemiluminescence emission of N-bromosuccinimide-luminol (NBS-luminol) system. Under the optimum conditions, the decreased CL intensity is linear with the concentration of aminomethylbenzoic acid in the range of 2×10−8 to 1.0×10−6 g ml−1 and with the concentration of aminophylline in the range of 1×10−7 to 7.0×10−6 g ml−1, respectively. The detection limit is 7.0×10−9 g ml−1 for aminomethylbenzoic acid (3σ) and 3.4×10−8 g ml−1 for aminophylline (3σ). The relative standard deviations (R.S.D.) for 11 parallel measurements of 2.0×10−7 g ml−1 aminomethylbenzoic acid and 1.0×10−6 g ml−1 aminophylline are 2.6 and 3.0%, respectively. The proposed methods have been applied for the determination of the studied drugs in their pharmaceutical formulations with satisfactory results. The possible use of the proposed system for the determination of aminomethylbenzoic acid in plasma sample was also tested. The possible inhibition mechanism of aminomethylbenzoic acid and aminophylline on luminol-NBS system was discussed briefly.  相似文献   

17.
Fan J  Wang A  Feng S  Wang J 《Talanta》2005,66(1):236-243
A new sequential injection spectrophotometric method was proposed for the determination of metoclopramide and tetracaine hydrochloride. The method was based on the detection of an unstable red intermediate compound resulting from the reaction of metoclopramide or tetracaine hydrochloride with potassium dichromate, in the presence of sodium oxalate, in sulfuric acid solution. The related reaction mechanisms of this new method have been studied. The experimental conditions were optimized for the stopped-flow and continuous-flow sequential injection models. For continuous flow, the linear range for determination of metoclopramide, the detection limit and the sampling frequency were 13-130 μg ml−1, 9.4 μg ml−1 and 40 samples per hour, respectively. For stopped flow, they were 3-42 μg ml−1, 1.0 μg ml−1 and 18 h−1, respectively. Adopting the continuous-flow model for tetracaine hydrochloride, the linear range was 25-300 μg ml−1, and the detection limit was 18.0 μg ml−1 with sampling frequency of 40 h−1. This method has been used to determine metoclopramide and tetracaine hydrochloride in pharmaceutical preparations, and the results are compared with those determined by the pharmacopoeia method. Statistical analysis reveals that there was no evidence of significant difference between the methods.  相似文献   

18.
A simple and sensitive kinetic method for the determination of traces of mercury (70-760 ng ml−1) based on its inhibitory effect on the addition reaction between methyl green and sulfite ion is proposed. The reaction was monitored spectrophotometrically by measuring the decrease in absorbance of methyl green at 596 nm between 2 and 4 min using a fixed time method. Artificial neural networks with back propagation algorithm coupled with an orthogonal array design were applied to the modeling of the proposed kinetic system and optimization of experimental conditions. An orthogonal design was utilized to design the experimental protocol, in which pH, concentration of sulfite, temperature, and concentration of methyl green were varied simultaneously. Optimum experimental conditions in term of sensitivity were generated by using ANNs. The rate of decrease in absorbance is inversely proportional to the concentration of Hg(II) over entire concentration range tested (100-550 ng ml−1) with a detection limit of 45 ng ml−1 and a relative standard deviation at 200-400 ng ml−1 Hg(II) of 3.2% (n=5). A simple preconcentration step improved the limit of detection and linear dynamic range of the method to about 8 and 12-760 ng ml−1, respectively, by about 10 times enrichment of mercury between 12 and 75 ng ml−1. The method was based on enrichment of Hg(II) from dilute samples on an anionic ion exchanger fixed on a plastic strip and was applied to the determination of Hg(II) in environmental samples with satisfactory results.  相似文献   

19.
This study aimed to develop a simple and efficient optimized high-performance liquid chromatograph (HPLC) method for simultaneous determination of cyclosporine A (CyA) and its major, partly active metabolites AM1, AM9, AM4N, and AM19 in whole blood from transplant patients using cyclosporine D (CyD) as internal standard. The method used a CN analytical column maintained at 60 °C with hexan-isopropanol (93:7, v/v) as mobile phase; detection was at 212 nm. Linearity for all five compounds was tested in the range of 31-1500 ng ml−1 for CyA and of 31-1000 ng ml−1 for metabolites. The limit of detection was found to be 15 ng ml−1 for all compounds.This modified, inexpensive method is also suitable for measuring cyclosporine A and metabolite concentrations in routine monitoring of patients undergoing treatment with CyA.  相似文献   

20.
A simple and highly sensitive method called thermal desorption (TD)-gas chromatography-mass spectrometry (GC-MS), which is used for the determination of trace amounts of 4-nonylphenol (NP) and 4-tert.-octylphenol (OP) in water samples, is described. NP and OP in samples are extracted from water samples and concentrated by the stir bar sorptive extraction (SBSE) technique. A stir bar coated with polydimethylsiloxane (PDMS) is added to a 2.0 ml water sample and stirring is carried out for 60 min at room temperature (25 °C) in a headspace vial. Then the extract is high sensitively analyzed by TD-GC-MS without any derivatization step. The optimum SBSE conditions are realized at an extraction time of 60 min. The detection limits are 0.02 ng ml−1 for NP and 0.002 ng ml−1 for OP. The method shows good linearity over the concentration range of 0.1-10 ng ml−1 for NP and 0.01-10 ng ml−1 for OP, and the correlation coefficients are higher than 0.999. The average recoveries of NP and OP are higher than 97% (R.S.D.: 3.6-6.2%) with correction using the added surrogate standards, 4-(1-methyl) octylphenol-d5 and deuterium 4-tert.-octylphenol. This simple, accurate, sensitive and selective analytical method may be used in the determination of trace amounts of NP and OP in tap and river water samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号