首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A laser spectrometer is described which was used in exploring resonance shapes of about 1000 Hz width in methane in the region of low absorption of about 10−6 cm−1. We report on first measurements of relative intensities of hyperfine components of theF 2 (2) line in methane, on direct observations of line splitting due to a recoil effect and of a non-linear dependence of collisional broadening of resonances in the transit region, and on observation of an anomalous Zeeman effect in hyperfine components in a longitudinal magnetic field. The results of this work were summarized by one of the authors (V.C.) at the 2nd Symposium on Frequency Standards and Metrology (Boulder, Colo., USA, July 1976) and at lectures in the School Enrico Fermi (Varenna, Italy, July 1976).  相似文献   

2.
In this paper, we present a line profile study of the R (0) line in the ν4 band of methane diluted in nitrogen and oxygen, from room temperature to 153 K. The measurements were performed over a total pressure range from 14 to 128 mbar. The collisional broadening and narrowing (Dicke effect) coefficients are derived from a fit of the experimental spectra by using the soft and hard collision models, taking into account the Dicke effect. For higher pressures, we have fitted the data with a model taking into account simultaneously the Dicke narrowing and the speed dependence effect. Finally, we have deduced the parameter n of the temperature dependence (inverse power law) of the broadening coefficients for the CH4-N2 and CH4-O2 gas mixtures.  相似文献   

3.
Following our recent study devoted to measurements of intensities of pure rotation lines of methane, room temperature far infrared spectra of methane diluted in nitrogen at five total pressures between 100 and 800 hPa have been recorded at the AILES beamline of the SOLEIL synchrotron. One hundred and five N2 broadening coefficients of methane pure rotation lines have been measured in the 83–261 cm?1 spectral range using multi-spectrum non-linear least squares fitting of Voigt profiles. Pressure-induced line shifts were not needed to fit the spectra to the noise level and line mixing effects were neglected. One hundred and seventy-six self broadening coefficients have also been measured in the 59–288 cm?1 spectral range using the pure methane spectra recorded in our previous work. The measured N2 broadening coefficients were compared to semi-classical calculations.  相似文献   

4.
Using a high-resolution tunable diode laser photoacoustic spectrometer, self-, N2 and O2 pressure broadening coefficients for the first 11 transitions of 12C16O2 in the R branch of the (30012) ← (00001) overtone band at the 6348 cm−1 have been revisited at room temperature (∼298 K). Air-broadening parameters have also been calculated from the N2 and O2 measurements. The dependence of the broadening on rotational quantum number m is discussed. The recorded lineshapes are fitted with standard Voigt line profiles in order to determine the collisional broadening coefficients of carbon dioxide transitions. The results are compared to our previous measurements and to the values reported in the HITRAN04 database and by other research group with a different spectroscopic technique.  相似文献   

5.
On the basis of experimental measurements of the electrical conductivity of the Nafaujasite zeolites (NaY), treated under vacuum up to 673 K for 24 hours, we clearly demonstrate that the behavior of the measured conductivity σac of the dehydrated zeolite NaY, over an interval of high frequency change, may be described by a power-law function: σac=A▹s. The exponent s, in this case, should be considered as temperature and frequency dependent when the parameter A is a temperature dependent function. On the other hand, when considering the measured conductivity as a sum of two terms (σac0+σ′(▹)) resulting from the contributions of the dc and the ac components respectively, we find that one of them obeys the Arrhenius law while the other can be expressed as A▹s. Parameter s is practically frequency independent when the frequency of the applied electrical field is higher than a characteristic value ▹c A comparison with the measurements performed on NaY dehydrated at 435 K is also included. Paper presented at the 2nd Euroconference on Solid State Ionics, Funchal, Madeira, Portugal, Sept. 10–16, 1995  相似文献   

6.
We report on experimental collisional relaxation of the J = 24 ← 23 line of HC314N, located near 218.3 GHz, induced by nitrogen, hydrogen, and helium. The measurements were carried out at selected temperatures in the 235-350 K range using a video-type spectrometer. The foreign gas broadening parameters and their temperature dependences were determined assuming Voigt lineshape profiles and the usual T−n temperature law. The experimental broadening parameters are compared with results derived using the ATC collisional formalism.  相似文献   

7.
In spite of its low isotopic abundance in methane (about 5×10−4), CH3D contributes greatly to the very weak absorption in the 1.58 μm methane transparency window. This methane window deserves to be characterized in details because it is important for planetary applications in particular for Titan and the giant planets. In this work, we recorded the CH3D spectrum by high sensitivity differential absorption spectroscopy (αmin≈5×10−8 cm−1) both at room temperature and at 81 K. A list of more than 9000 lines was constructed from the 81 K spectrum for the 6099–6530 cm−1 region. In order to get the temperature dependence of the line intensities, the low energy values have to be determined. The rovibrational assignments available in the literature provide low energy values for about 380 strong transitions of the region. This is insufficient to characterize the temperature dependence of the CH3D absorption between 6200 and 6400 cm−1. In this interval, a list of 5500 lines was constructed from the room temperature spectrum. The empirical energy values of the transitions were derived from the ratio of the intensities at 81 K and 294 K. The exact and empirical lower state energies included in the final line lists provided as Supplementary Material, allow for accounting for the temperature dependence of the CH3D spectrum in the entire 6099–6530 cm−1 region.Our measurements have been compared to the spectroscopic parameters and assignments available in the literature in particular those adopted in the HITRAN database. Improvements and corrections are proposed for the wavenumber calibration and for some lower state energies.  相似文献   

8.
Laser wave mixing is presented as an effective technique for spatially resolved kinetic temperature measurements in an atmospheric-pressure radio-frequency inductively coupled plasma. Measurements are performed in a 1 kW, 27 MHz radio-frequency plasma using a continuous-wave, tunable 811.5 nm diode laser to excite the 4s3P2→4p3D3 argon transition. Kinetic temperature measurements are made at five radial steps from the center of the torch and at four different torch heights. The kinetic temperature is determined by measuring simultaneously the line shape of the sub-Doppler backward phase-conjugate degenerate four-wave mixing and the Doppler broadened forward-scattering degenerate four-wave mixing. The temperature measurements result in a range of 3,500 to 14,000±150 K. Electron densities measured range from 6.1 (±0.3)×1015 cm−3 to 10.1 (±0.3)×1015 cm−3. The experimental spectra are analyzed using a perturbative treatment of the backward phase-conjugate and forward-geometry wave-mixing theory. The Stark width is determined from the collisional broadening measured in the phase-conjugate geometry. Electron density measurements are made based on the Stark width. The kinetic temperature of the plasma was found to be more than halved by adding deionized water through the nebulizer.  相似文献   

9.
Pressure broadening and shift coefficients for the ν13 band of 12C2H2 have been measured for He, Ne, and Ar at a temperature of 195 K using high resolution diode laser spectroscopy. The pressure broadening and shifts follow patterns with rotational assignment that are similar to those at room temperature but are generally larger in magnitude. The change in magnitude is qualitatively described by assuming, for each transition, a constant cross section for pressure broadening or shifting. Better agreement may be obtained for pressure broadening coefficients by using empirically determined temperature exponents; better agreement still is obtained from close coupling calculations of the pressure broadening cross sections. PACS 33.70.Jg  相似文献   

10.
We measured the temperature dependence of the nitrogen broadening, narrowing and line-mixing coefficients of four lines of the P9 manifold in the ν3 band of 12CH4 for atmospheric purposes. The data were collected using our tunable diode laser (TDL) spectrometer with active wavenumber control coupled to a newly developed cold Herriott cell with a path length of 5.37 m and a temperature uniformity of better than 0.01 K along the cell. We recorded and analyzed spectra recorded at sample temperatures between 90 K and room temperature. We have investigated the influence of our new results in the inversion model used to retrieve methane profiles from atmospheric spectra; our new results make it possible to retrieve significantly more precise methane profiles. The atmospheric spectra we utilized were obtained by several of us with a balloon-born Fourier Transform infrared experiment in a limb configuration. Differences up to 7% on the retrieved volume mixing ratio were found compared to an inversion model using only HITRAN04 spectroscopic parameters.  相似文献   

11.
Marques  J.G.  Kling  A.  de Jesus  C.M.  Soares  J.C.  Friedsam  P.  Freitag  K.  Vianden  R. 《Hyperfine Interactions》1999,120(1-8):485-489
The temperature dependence of the electric-field gradient of 111Cd in single crystalline LiTaO3 was studied from room temperature to 1040 K in the ferroelectric and paraelectric phases. The data taken at room temperature show unambiguously the presence of two quadrupole interaction frequencies, νQ1=230 MHz and νQ2=242 MHz, with nonzero asymmetry parameters, while above the Curie temperature (TC=878 K) the data are well described by a unique frequency. The electric field gradient shows a usual temperature dependence, increasing aproximately in a linear fashion until TC and then decreasing faster. The initial increase is explained mostly by the lattice expansion, while above TC it is necessary to consider Li and O displacements. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

12.
Cavity ringdown (CRD) spectroscopy, with its high sensitivity, provides a novel way to perform continuous-wave (cw) stimulated Raman gain (SRG) spectroscopy, rather than by conventional optically detected coherent Raman techniques. Tunable cw laser light at ∼1544 nm is used to probe ringdown decay from a rapidly-swept, high-finesse optical cavity containing a gas-phase sample of interest and itself located inside the cavity of a cw single-longitudinal-mode Nd:YAG ring laser operating at ∼1064.4 nm. This approach is used to measure cw SRG spectra of the ν 1 fundamental rovibrational Raman band of methane gas at ∼2916.5 cm−1. The resulting SRG-CRD resonances have ringdown times longer than in the off-resonance case, in contrast to the usual shorter ringdown times arising from absorption and other loss processes. Previously reported noise-equivalent sensitivities have been substantially improved, by using a second ringdown cavity to facilitate subtraction of infrared-absorption background signals. Moreover, by employing a ringdown cavity in the form of a ring, the SRG-pump and CRD-detected Stokes beams can co-propagate uni-directionally, which significantly reduces Doppler broadening.  相似文献   

13.
We designed, fabricated and tested a multipath Herriott cell (or off-axis spherical mirror interferometer) to achieve low temperature absorption measurements. The cell is fabricated entirely from copper, and the 15 cm radius of curvature copper mirrors have gold coated reflective surfaces. The cell was tested at temperatures between 296 and 20 K with a folded absorption path length of 5.37 m utilizing a lead salt tunable diode laser. Short term temperature stability (1 h) of the Herriott cell is better than 0.005 K under normal operating conditions with a temperature uniformity better than 0.01 K (not measurable). The cell was tested by performing collisional cooling experiments on 13C16O2 in helium at temperatures between 70 and 20 K and by performing more traditional pressure broadening and shift measurements on molecular infrared absorption lines at temperatures between 300 and about 80 K on 13C16O2 and methane.  相似文献   

14.
Thermally stimulated current (TSC) measurements performed in the 100 K–400 K temperature range on Bi4Ti3O12 (BiT) thin films annealed at 550 °C and 700 °C had revealed two trapping levels having activation energies of 0.55 eV and 0.6 eV. The total trap concentration was estimated at 1015 cm−3 for the samples annealed at 550 °C and 3×1015 cm−3 for a 700 °C annealing and the trap capture cross-section was estimated about 10−18 cm2. From the temperature dependence of the dark current in the temperature range 20 °C–120 °C the conduction mechanism activation energy was found to be about 0.956–0.978 eV. The electrical conductivity depends not only on the sample annealing temperature but also whether the measurement is performed in vacuum or air. The results on the dark conductivity are discussed considering the influence of oxygen atoms and oxygen vacancies. Received: 28 January 1998 / Accepted: 8 January 1999 / Published online: 5 May 1999  相似文献   

15.
Alonso  R. E.  Horowitz  C.  López GarcÍa  A. 《Hyperfine Interactions》2001,136(3-8):541-547
The temperature dependence of the hyperfine parameters in a powder sample of the Sr0.88Ba0.12HfO3 compound has been investigated for the first time using perturbed angular correlation spectroscopy. The time spectra were measured as a function of the temperature from 293 to 1273 K. Activated 181Ta nuclei were used as hyperfine probes at the Hf sites. The analysis of the time spectra indicates the presence of two different surroundings for the Ta probes. The most populated site (f 1≈75% at laboratory temperature) was fitted with the usual static quadrupole hyperfine interactions found in most perovskite-type compounds. The resulting quadrupole frequency is ω Q ≈24 Mrad/s at this temperature. This frequency continuously decreases to nearly 9 Mrad/s at 1273 K. Its line width temperature dependence displays three regions and the changes observed probably correspond to phase transitions. The other site has a large and temperature independent quadrupole frequency ω Q ≈120 Mrad/s that reversibly transforms into the first at high temperatures and probably originates from some defect in the structure. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   

16.
O2-broadening coefficients have been measured for 16 lines in the P and R branches of the fundamental ν3 band of 12C32S2 at room and low temperatures (298.0, 273.2, 248.2, 223.2, and 198.2 K), using a tunable diode laser spectrometer and a low temperature cell. These lines from P(62) and R(64) are located in the spectral range 1519-1547 cm−1. The collisional half-widths are obtained by fitting each observed profile with the Voigt and Rautian lineshape models. The broadening coefficients have also been calculated at all experimental temperatures using a semiclassical calculation performed by considering in addition to the electrostatic quadrupole-quadrupole interaction, a simple anisotropic contribution. Finally, from all the results, the parameter n of the temperature dependence of the broadening coefficients has been determined both experimentally and theoretically.  相似文献   

17.
This study provides the first direct experimental measurements of the off-diagonal relaxation matrix element coefficients for line mixing in air-broadened methane spectra for any vibrational band and the first off diagonal relaxation matrix elements associated with line mixing for pure methane in the ν2 + ν3 band of 12CH4. The speed-dependent Voigt profile with line mixing is used with a multispectrum nonlinear least squares curve fitting technique to retrieve the various line parameters from 11 self-broadened and 10 air-broadened spectra simultaneously. The room temperature spectra analyzed in this work are recorded at 0.011 cm−1 resolution with the McMath-Pierce Fourier transform spectrometer located at the National Solar Observatory, Kitt Peak, Arizona. The off-diagonal relaxation matrix element coefficients of ν2 + ν3 transitions between 4410 and 4629 cm−1 are reported for eighteen pairs with upper state J values between 2 and 11. The observed line mixing coefficients for self broadening vary from 0.0019 to 0.0390 cm−1 atm−1 at 296 K. The measured line mixing coefficients for air broadening vary from 0.0005 to 0.0205 cm−1 atm−1 at 296 K.  相似文献   

18.
Cavity enhanced absorption spectroscopy is performed using an external cavity diode laser operating around 1516 nm. We demonstrate a sensitivity of 6×10−8 cm−1 Hz−1/2 and utilise a simple method to measure pressure-induced broadening and shift coefficients. The broadening and shift coefficients for six gases (helium, neon, argon, xenon, oxygen and nitrogen) have been determined at room temperature for four transitions in the υ 1+υ 3 combination band of ammonia. Comparisons of the broadening coefficients with previous work in this region, where it exists, show good agreement. The broadening and shift coefficients of nitrogen and oxygen are also in good agreement with calculated values using the Robert and Bonamy theory. Both the broadening and shift coefficients show a clear trend through the rare gases, which can be explained in terms of the varying magnitude of the long range attractive forces operating between the colliding partners. We also demonstrate the application of the Parmenter–Seaver formalism to estimate the potential well depth of the ammonia dimer from the obtained broadening coefficients. The obtained well depth agrees well with theoretical calculations.  相似文献   

19.
Summary The optogalvanic signal (OGS) induced in a uranium-neon hollow-cathode discharge was measured as a function of the laser power density for the 0→16900 cm−1 (591.5 nm) uranium transition. Theoretical relations derived by solving a two-level system rate equations showed the OGS dependence on the laser photon flux, for a modulated c.w. light and for stimulated transitions starting from the ground state. A fitting of the theoretical relations to the experimental measurements allowed the determination of the σ0 τ product, that is, the saturation parameter of the transition. The results showed good agreement between the σ0 τ values obtained by the optogalvanic and the usual optical absorption processes.  相似文献   

20.
A methane spectral line list for the 5550-6236 cm−1 range with the intensity cut off 4×10−26 cm/molecule at 296 K is presented. The line list is based on new extensive measurements of methane spectral line parameters performed at different temperatures and pressures of methane and buffer gases N2, O2 and air. This spectral line list is prepared in HITRAN-2008 format and contains the following spectral line parameters of about 11,000 lines: position, intensity, energy for lower state (where possible), air-broadening and air-shifting coefficients, exponent of temperature dependence of air-broadening coefficient and self-broadening coefficient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号