首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of NaCl and KF on the sphere-to-rod micellar growth behavior of triblock copolymers having two different compositions, (EO)20(PO)70(EO)20 (P123) and (EO)26(PO)40(EO)26 (P85), have been studied by dynamic light scattering (DLS), small angle neutron scattering (SANS) and dilute solution viscometry. NaCl can effectively tune the sphere-to-rod growth temperature of the micelles of both these copolymers and induce micellar growth down to the room temperature and below. The growth behavior is found to be dependent on the composition of the copolymer as P123 being more hydrophobic shows the room temperature growth in the presence of ethanol at significantly lesser NaCl concentration than the less hydrophobic copolymer P85. DLS studies depict for the first time the growth driven transition of the copolymer solutions from dilute to semi-dilute regime as a function of copolymer and salt concentrations. KF can also induce room temperature growth of the P123 micelles at lesser salt concentration than NaCl but it fails to induce any such growth of the P85 micelles. A pseudo-binary temperature-concentration phase diagram on 15% copolymer solutions shows the variation of the sphere-to-rod transition temperature and the cloud point of the copolymer solutions as a function of salt concentration.  相似文献   

2.
The mixed micellar system comprising the poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide)-based triblock copolymer (EO)(20)(PO)(70)(EO)(20) (P123) and the anionic surfactant sodium dodecyl sulfate (SDS) has been investigated in aqueous media by small-angle neutron scattering (SANS) and viscosity measurements. The aggregation number of the copolymer in the micelles decreases upon addition of SDS, but a simultaneous enhancement in the degree of micellar hydration leads to a significant increase in the micellar volume fraction at a fixed copolymer concentration. This enhancement in the micellar hydration leads to a marked increase in the stability of the micellar gel phase until it is destroyed at very high SDS concentration. Mixed micellar systems with low and intermediate SDS concentrations form the micellar gel phase in much wider temperature and copolymer concentration ranges than the pure copolymer micellar solution. A comparison of the observed results with those for the copolymers (EO)(26)(PO)(40)(EO)(26) (P85) and (EO)(99)(PO)(70)(EO)(99) (F127) suggests that the composition of the copolymers plays a significant role in determining the influence of SDS on the gelation characteristics of the aqueous copolymer solutions. Copolymers with high PO/EO ratios show an enhancement in the stability of the gel phase, whereas copolymers with low PO/EO ratios show a deterioration of the same in the presence of SDS.  相似文献   

3.
The ternary phase diagram of the amphiphilic triblock copolymer PEO-PPO-PEO ((EO)(20)(PO)(70)(EO)(20) commercialized under the generic name P123), water, and ethanol has been investigated at constant temperature (T = 23 degrees C) by small-angle X-ray scattering (SAXS). The microstructure resulting from the self-assembly of the PEO-PPO-PEO block copolymer varies from micelles in solution to various types of liquid crystalline phases such as cubic, 3D hexagonal close packed spheres (HCPS), 2D hexagonal, and lamellar when the concentration of the polymer is increased. In the isotropic liquid phase, the micellar structural parameters are obtained as a function of the water-ethanol ratio and block copolymer concentration by fitting the scattering data to a model involving core-shell form factor and a hard sphere structure factor of interaction. The micellar core, the aggregation number, and the hard sphere interaction radius decrease when increasing the ethanol/water ratio in the mixed solvent. We show that the fraction of ethanol present in the core is responsible for the swelling of the PPO blocks. In the different liquid crystalline phases, structural parameters such as lattice spacing, interfacial area of PEO block, and aggregation number are also evaluated. In addition to classical phases such as lamellar, 2D hexagonal, and liquid isotropic phases, we have observed a two-phase region in which cubic Fm3m and P6(3)mmc (hexagonally close packing of spheres (HCPS)) phases coexist. This appears at 30% (w/w) of P123 in pure water and with 5% (w/w) of ethanol. At 10% (w/w) ethanol, only the HCPS phase remains present.  相似文献   

4.
Micellization behavior of an amphiphilic ethylene oxide-propylene oxide-ethylene oxide tri-block copolymer Pluronic P85 [(EO)(26)(PO)(39)-(EO)(26)] in aqueous solution and in the presence of a hydrophobic C(14)diol (also known as Surfynol104) was examined by physico-chemical methods such as viscometry, cloud point (CP) and scattering techniques viz. dynamic light scattering (DLS) and small angle neutron scattering (SANS). The addition of diol decreases the cloud point and gelation temperature of aqueous Pluronic P85 copolymer solution. DLS and SANS measurements of the polymer in aqueous solution indicated micellar growth and sphere to rod transition in the presence of diol. Surfynol 104 is a sparingly water soluble diol surfactant with a solubility of approximately 0.1 wt%. However, up on addition to Pluronic solution, diol gets incorporated in the block copolymer micelles and leads to structural transition of the micelles. An increase in the temperature and the presence of added sodium chloride in the solution further enhances this effect. The addition of hydrophobic C(14)diol increases the hydrodynamic size and aggregation numbers of the micellar system. The micellar parameters for the copolymer in the presence of C(14)diol are reported at different temperatures and added sodium chloride concentrations.  相似文献   

5.
The morphological changes of micelles composed of triblock copolymer of ethylene oxide and propylene oxide (EO20PO70EO20) in the presence of different inorganic salts and ethanol have been investigated using dynamic light scattering (DLS), rheometry, and cryogenic transmission electron microscopy (cryo-EM). The following salts were studied: KF, KCl, KI, LiCl, and CsCl. In the presence of KF, KCl, and CsCl, spherical and wormlike micelles coexist. LiCl and KI have little influence on the morphology of the micelles, whereas KF has the most pronounced effect. In agreement with the well-known Hoffmeister anion salt series, F- has the strongest effect of the three anions studied (F-, Cl-, I-). In contrast, the effectiveness of the cation type does not follow the original Hoffmeister cation series. The addition of ethanol to the KCl micellar solutions leads to the formation of more or longer wormlike micelles, which start to interact at certain copolymer concentrations depending on the volume fraction of ethanol added. Both the dilute and the semidilute regimes of the wormlike micelles were studied. The length of the micelles reaches a maximum value at around 8-10 vol % ethanol, after which it decreases again. At higher ethanol concentrations (18 vol %), spherical micelles are formed. Conclusions from this study enhance our understanding of the role played by ethanol and salts in the formation of micelle-templated mesoporous materials, such as SBA-15.  相似文献   

6.
The interaction between the nonionic surfactant C12EO6 and the poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymer EO20PO68EO20 (P123) has been investigated by means of isothermal titration and differential scanning calorimetry (DSC) as well as static and dynamic light scattering (SLS and DLS). P123 self-assembles in water into spherical micelles at ambient temperatures. At raised temperatures, the DSC data revealed a sphere-to-rod transition of the P123 micelles around 60 degrees C. C12EO6 interacts strongly with P123 micelles in aqueous solution to give mixed micelles with a critical micelle concentration (cmc) well below the cmc for pure C12EO6. The presence of C12EO6 also lowers the critical micelle temperature of P123 so aggregation starts at significantly lower temperatures. A new phenomenon was observed in the P123-C12EO6 system, namely, a well-defined sphere-to-rod transition of the mixed micelles. A visual phase study of mixtures containing 1.00 wt % P123 showed that in a narrow concentration range of C12EO6 both the sphere-to-rod transition and the liquid-liquid phase separation temperature are strongly depressed compared to the pure P123-water system. The hydrodynamic radius of spherical mixed micelles at a C12EO6/P123 molar ratio of 2.2 was estimated from DLS to be 9.1 nm, whereas it is 24.1 nm for the rodlike micelles. Furthermore, the hydrodynamic length of the rods at a molar ratio of 2.2 is in the range of 100 nm. The retarded kinetics of the shape transition was detected in titration calorimetric experiments at 40 degrees C and further studied by using time-resolved DLS and SLS. The rate of growth, which was slow (>2000 s), was found to increase with the total concentration.  相似文献   

7.
A short-chain triblock copolymer EO9-DMS7-EO9 was synthesized by coupling reaction of allyl-terminated poly(ethylene oxide) and Si-H-terminated poly(dimethylsiloxane). The structure and purity of synthesized copolymer was carefully characterized. Self-assembly behavior of EO9-DMST-EO9 triblock copolymer in water was investigated. And it was found that along with the increase of copolymer concentration, morphology of self-assembled aggregates transits from sphere to rod. A plausible understanding of the morphology transition for the investigated triblock copolymer was proposed.  相似文献   

8.
The present article reports on static and dynamic light scattering (SLS and DLS) studies of aqueous solutions of the nonionic surfactant C12EO6 and the poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymer EO20PO68EO20 (P123) at temperatures between 25 and 45 degrees C. In water, P123 self-assembles into spherical micelles with a hydrodynamic radius of 10 nm, and at 40 degrees C, these micelles consist of 131 unimers. Addition of C12EO6 leads to an association of the surfactant molecules to the P123 micelles and mixed micelles are formed. The size and structure of the mixed micelles as well as interparticle interactions were studied by varying the surfactant-to-copolymer (C12EO6/P123) molar ratio. The novelty of this study consists of a composition-induced structural change of the mixed micelles at constant temperature. They gradually change from being spherical to polymer-like with increasing C12EO6 content. At low C12EO6/P123 molar ratios (below 12), the SLS measurements showed that the molar mass of the mixed micelles decreases with an increasing amount of C12EO6 in the micelles for all investigated temperatures. In this regime, the mixed micelles are spherical and the DLS measurements revealed a decrease in the hydrodynamic radius of the mixed micelles. An exception was found for C12EO6/P123 molar ratios between 2 and 3, where the mixed micelles become rodlike at 40 degrees C. This was the subject of a previous study and has hence not been investigated here. At high molar ratios (48 and above), the polymer-like micelles present a concentration-induced growth, similar to that observed in the pure C12EO6/water system.  相似文献   

9.
Effects of constituent block size of triblock copolymers on the nature of the water molecules in the corona region of their micelles have been investigated using time-resolved fluorescence measurements. The physical nature of the water molecules in the micellar corona region of the block copolymer, Pluronic F88 ([ethylene oxide (EO)]103-[propylene oxide (PO)]39-EO103), has been studied using a solubilized coumarin dye. Solvent reorientation time and rotational correlation time have been measured and compared with another block copolymer, Pluronic P123 (EO20-PO70-EO20), which has a different composition of the constituent PO and EO blocks. It is noted that due to the presence of larger number of EO blocks in F88 as compared with P123, the corona region of the former micelle is more hydrated than that of the latter. The solvent reorientation time and rotational correlation time are found to be relatively shorter for F88 as compared with P123. This indicates that the water molecules in the corona of the F88 micelle are more labile than those of P123, which is also supported from the estimated number of water molecules associated with each EO unit, measured from the size of each type of micelle and its aggregation number. To understand the effect of block size on the chemical reactions in these microheterogeneous media, electron transfer reactions have been carried out between different coumarin acceptors and N, N-dimethylaniline donor. The electron transfer results obtained in F88 micelles have been compared with those obtained in P123, and the results are rationalized on the basis of the relative hydration of the two triblock copolymer micelles.  相似文献   

10.
LiCl-induced changes in the micellar hydration and gelation characteristics of aqueous solutions of the two triblock copolymers F127 (EO(100)PO(70)EO(100)) and P123 (EO(20)PO(70)EO(20)) (where EO represents the ethylene oxide block and PO represents the propylene oxide block) have been studied by small-angle neutron scattering (SANS) and viscometry. The effect of LiCl was found to be significantly different from those observed for other alkali metal chloride salts such as NaCl and KCl. This can be explained on the basis of the complexation of hydrated Li(+) ions with the PEO chains in the micellar corona region. The interaction between the chains and the ions is more significant in the case F127 because of its larger PEO block size, and therefore, micelles of this copolymer show an enhanced degree of hydration in the presence of LiCl. The presence of the hydrated Li(+) ions in the micellar corona increases the amount of mechanically trapped water there and compensates more than the water molecules lost through the dehydration of the PEO chains in the presence of the Cl(-) ions. The enhancement in micellar hydration leads to a decrease in the minimum concentration required for the F127 solution to form a room-temperature cubic gel phase from 18% to 14%. Moreover, for both copolymers, the temperature range of stability of the cubic gel phase also increases with increasing LiCl concentration, presumably because of the ability of the Li(+) ions to reduce micellar dehydration with increasing temperature. Viscosity studies on a poly(ethylene glycol) (PEG) homopolymer with a size equivalent to that of the PEO block in F127 (4000 g/mol) also suggest that the dehydrating effect of the Cl(-) ion on the PEG chain is compensated by its interaction with the hydrated Li(+) ions.  相似文献   

11.
Poloxamers F88 (EO97PO39EO97) and P85 (EO27PO39EO27) are triblock copolymers of ethylene oxide (EO) and propylene oxide (PO), which have the same hydrophobic PO block. We studied aqueous solutions of these two copolymers by the conjoint use of differential scanning calorimetry (DSC), rheology, and small-angle X-ray scattering (SAXS). The results showed that the temperature-induced micellization of aqueous solutions of F88 and P85 was a progressive process followed by gelation for sufficiently concentrated samples. Gelation was due to the ordered packing of micelles under a hexagonal compact (HC) structure for P85 and a body-centered cubic (BCC) phase for F88. Importantly, the phase diagram of F88/P85 mixtures in water was elucidated and showed the destabilization of the HC phase upon addition of small amounts of F88.  相似文献   

12.
The dynamics of the micelles of five triblock poly(ethyleneoxide)-poly(propyleneoxide)-poly(ethyleneoxide) copolymers, the Pluronics P104 (EO27PO61EO27), P84 (EO19PO43EO19), P65 (EO18PO29EO18), P85 (EO26PO40EO26), and P103 (EO17PO60EO17), have been investigated using two chemical relaxation methods: the temperature-jump and the ultrasonic relaxation (absorption). In the frequency range investigated (0.5-50 MHz), the ultrasonic absorption spectra (absorption vs frequency plots) consisted in tails of relaxation curves, indicating characteristic times much longer than 0.3 μs for the exchange of copolymers between micelles and intermicellar solution. Absorption measurements at a fixed frequency yielded the critical micellization temperature of the solutions. The temperature-jump results obtained in this study together with those from a previous one for the copolymers L64 (EO13PO30EO13) and PF80 (EO73PO27EO73) (B. Michels et al., Langmuir 13, 3111, 1997) showed that the relaxation time associated with the formation/breakup of micelles becomes longer upon increasing copolymer molecular weight at constant composition. This time also increased when decreasing the length of the hydrophilic block at fixed hydrophobic block length or increasing the length of the hydrophobic block at fixed hydrophilic block length, similar to conventional surfactants. The dynamics of block copolymers micelles in aqueous solution are discussed. Copyright 1999 Academic Press.  相似文献   

13.
The phase behavior of a mixture of poly(isoprene)-poly(oxyethylene) diblock copolymer (PI-PEO or C250EO70) and poly(oxyethylene) surfactant (C12EO3, C12EO5, C12EO6, C12EO7, and C12EO9) in water was investigated by phase study, small-angle X-ray scattering, and dynamic light scattering (DLS). The copolymer is not soluble in surfactant micellar cubic (I1), hexagonal (H1), and lamellar (Lalpha) liquid crystals, whereas an isotropic copolymer fluid phase coexists with these liquid crystals. Although the PI-PEO is relatively lipophilic, it increases the cloud temperatures of C12EO3-9 aqueous solutions at a relatively high PI-PEO content in the mixture. Most probably, in the copolymer-rich region, PI-PEO and C12EOn form a spherical composite micelle in which surfactant molecules are located at the interface and the PI chains form an oil pool inside. In the C12EO5/ and C12EO6/PI-PEO systems, one kind of micelles is produced in the wide range of mixing fraction, although macroscopic phase separation was observed within a few days after the sample preparation. On the other hand, small surfactant micelles coexist with copolymer giant micelles in C12EO7/ and C12EO9/PI-PEO aqueous solutions in the surfactant-rich region. The micellar shape and size are calculated using simple geometrical relations and compared with DLS data. Consequently, a large PI-PEO molecule is not soluble in surfactant bilayers (Lalpha phase), infinitely long rod micelles (H1 phase), and spherical micelles (I1 phase or hydrophilic spherical micelles) as a result of the packing constraint of the large PI chain. However, the copolymer is soluble in surfactant rod micelles (C12EO5 and C12EO6) because a rod-sphere transition of the surfactant micelles takes place and the long PI chains are incorporated inside the large spherical micelles.  相似文献   

14.
The effect of molecular characteristics of EO-PO triblock copolymers viz. Pluronic(?) P103 (EO(17)PO(60)PEO(17)), P123 (EO(19)PO(69)EO(19)), and F127 (EO(100)PO(65)EO(100)) on micellar behavior and solubilization of a diuretic drug, hydrochlorothiazide (HCT) was investigated. The critical micellization temperatures (CMTs) and size for empty as well as drug loaded micelles are reported. The CMTs and micelle size depended on the hydrophobicity and molecular weight of the copolymer; a decrease in CMT and increase in size was observed on solubilization. The solubilization of the drug hydrochlorothiazide (HCT) in the block copolymer nanoaggregates at different temperatures (28, 37, 45°C), pH (3.7, 5.0, 6.7) and in the presence of added salt (NaCl) was monitored by using UV-vis spectroscopy and solubility data were used to calculate the solubilization characteristics; micelle-water partition coefficient (P) and thermodynamic parameters of solubilization viz. Gibbs free energy (ΔG(s)°), enthalpy (ΔH(s)°) and entropy (ΔS(s)°). The solubility of the drug in copolymer increases with the trend: P103>P123>F127. The solubilized drug decreased the cloud point (CP) of copolymers. Results show that the drug solubility increases in the presence of salt but significantly enhances with the increase in the temperature and at a lower pH in which drug remains in the non-ionized form.  相似文献   

15.
The interactions between triblock copolymers of poly(ethylene oxide) and poly(propylene oxide), P103 and F108, EO(n)PO(m)EO(n), m=56 and n=17 and 132, respectively, and m-s-m type gemini surfactants, m=8, 10, 12, and 18, and s = 3, 6, 12, and 16, have been studied in aqueous solution using isothermal titration calorimetry and dynamic light scattering techniques. The enthalpograms of F108 as a function of surfactant concentration show one broad peak at polymer concentrations C(p) < or = 0.50 wt%, below the cmc of the copolymer at 25 degrees C. It is attributed to interactions between the surfactant and the triblock copolymer monomer. DLS results show hydrodynamic radii (R(h)) initially consistent with copolymer monomers that change to values consistent with gemini surfactant micelles as the surfactant concentration is increased. In P103 solutions at C(p) > or = 0.05 wt%, two peaks appear in the enthalpograms, and they are attributed to the interactions between the gemini surfactant and the micelle or monomer forms of the copolymer. An origin-based nonlinear fitting program was employed to deconvolute the two peaks and to obtain estimates of peak properties. An estimate of the fraction of copolymer in aggregated form was also obtained. The enthalpy change due to interactions between the surfactants and P103 aggregates is very large compared to values obtained for traditional surfactants. This suggests that extensive reorganization of copolymer aggregates and surrounding solvent occurs during the interaction. DLS results for the P103 systems containing C(p) > or = 0.05% show evidence of very large aggregates in solution, likely P103 micelle clusters. The transitions observed in the hydrodynamic radii are consistent with a breakdown of micelle clusters with addition of gemini surfactant, followed by mixed micelle formation and/or deaggregation into monomer P103. This is followed by interactions similar to those typically observed in surfactant-nonionic polymer systems. Mechanisms for the interaction and the observed structural changes are discussed.  相似文献   

16.
Apparent specific densities of aqueous solutions of the diblock copolymers C18(EO)100, C18(EO)20, and (EO)92(BO)18 and the triblock copolymers (EO)25(PO)40(EO)25 and (EO)21(PO)47(EO)21 in the micellar state have been measured over a temperature range from 10 to 90 degrees C at concentrations between 1% and 5%, using an oscillating tube densitometer. From these measurements, apparent specific volumes of poly(ethylene oxide) (PEO), poly(propylene oxide) (PPO), poly(butylene oxide) (PBO), and octadecane in the micellar state have been determined. The composition of the block copolymers was checked by NMR spectroscopy. Results were compared with published data for the polymers and bulk values for octadecane, respectively. The apparent specific density of PEO chains in the dissolved state was also measured for PEG4600 solutions at different concentrations and compared with results in the micellar state. The results presented in the paper are crucial in connection with analysis and modeling of small-angle X-ray scattering (SAXS) data from polymer and block copolymer micellar systems. PEO and PPO have a relatively low apparent partial specific volume in water at low temperatures. It is associated with water molecules making strong hydrogen bonds with the oxygen atoms on the polymer backbone. These water molecules gradually become disordered when the temperature is increased and the polymer apparent specific volume increases. For PBO in the micellar cores of PBO-PEO block copolymer micelles and in PNiPAM microgels, pronounced temperature dependence with the same origin is also found. The application of the derived results for the apparent specific volume of PEO for deriving contrast factors is demonstrated and the results are used in the analysis of SAXS data for semidilute solutions of PEG4600 in a broad temperature range.  相似文献   

17.
结合流变学频率扫描和同步辐射小角X射线散射(SAXS), 研究了17R4(PO14-EO24-PO14)含量和温度对17R4/F127(EO99-PO65-EO99)混合水溶液凝胶结构的影响. 结果表明, 溶胶、 软凝胶和硬凝胶分别对应无序结构、 无序与立方相共存结构以及立方相结构. 对于F127水溶液体系, 可以将F127形成的胶束看作硬球, 随着温度的升高, 胶束的硬球半径和胶束中F127链的聚集数随之减小, 这是因为17R4在较低温度下很难形成胶束, 当温度升高时, 17R4链参与胶束的形成, 从而使胶束数目增加, 因此每个胶束中的F127链数也随之减小. 当17R4含量较高时, 胶束外壳中F127部分的PEO链段数随着温度升高而减小, 胶束外壳变得更软, 因此, 当17R4/F127摩尔比为2: 1时, 混合溶液在高温下呈现面心立方(fcc)到体心立方(bcc)的结构转变.  相似文献   

18.
苯基桥键型介孔材料的制备与表征   总被引:1,自引:0,他引:1  
以1,4-二(三乙氧基硅基)-苯为硅源,聚氧乙烯-聚氧丙烯-聚氧乙烯三嵌段共聚物为模板剂,十六烷基三甲基溴化铵为共模板剂,乙醇为共溶剂,在酸性条件下合成了球形的苯基桥键型有序介孔材料。X射线衍射和透射电镜表征结果表明,该材料具有有序的二维六方相介观结构;傅立叶红外变换、13C和29S i固体核磁共振表征证实硅胶骨架中成功引入了苯基桥键,且在合成和模板移除过程中未发生S i—C键断裂;元素分析表明材料含碳量为34%~39%;热重分析说明材料稳定温度可达300℃;氮气吸附脱附揭示了材料有较高的比表面积(500~600 m2/g)和窄的孔径分布(3.21~3.95 nm)。将该苯基材料不经化学改性直接用作反相高效液相色谱固定相,并与商品键合硅胶苯基色谱柱比较,发现桥键型苯基材料对芳香类化合物具有很好的分离选择性,残留硅羟基明显减少,作为一种新的液相色谱填料具有很好的应用前景。  相似文献   

19.
The fluorescence measurements of tetraethylene glycol dodecyl ether (C12E4) and triblock polymer (Pluronic P103), poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide), (EO)17(PO)60(EO)17, binary mixtures have been performed over the whole mixing range in the temperature range of 20-40 degrees C. The results have been evaluated by computing various micellar parameters and excimer formation. It has been concluded that mixed micelle formation takes place due to unfavorable mixing at lower temperature range, and the magnitude of which decreases with the increase in temperature up to 40 degrees C. The reduction in the unfavorable mixing has been attributed to the dehydration of P103 micelles with the increase in temperature.  相似文献   

20.
The phase transition between unimer and micellar phases of poly(ethylene oxide)–poly(propylene oxide)–poly(ethylene oxide) (PEO–PPO–PEO) triblock copolymer Pluronic P105 in aqueous solution has been investigated as a function of temperature using Fourier transform infrared spectroscopy. The transition of 8 wt% Pluronic P105 in aqueous solution was found to occur at 25 °C. As temperature increases, PO blocks appear to be stretched conformers with strong interchain interaction, and the formation of a hydrophobic core in the micellar phase. The EO chains are found to change to a more disordered structure with low-chain packing density from the unimer phase to the micellar phase. Both the EO and PO blocks exhibit dehydration during the phase transition. Received: 17 September 1998 Accepted in revised form: 10 December 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号