首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Let θθ? = (θθ?1, θθ?2, …, θθ?n)′ be the least-squares estimator of θ = (θ1, θ2, …, θn)′ by the realization of the process y(t) = Σk = 1nθkfk(t) + ξ(t) on the interval T = [a, b] with f = (f1, f2, …, fn)′ belonging to a certain set X. The process satisfies E(ξ(t))≡0 and has known continuous covariance r(s, t) = E(ξ(s)ξ(t)) on T × T. In this paper, A-, D-, and Ds-optimality are used as criteria for choosing f in X. A-, D-, and Ds-optimal models can be constructed explicitly by means of r.  相似文献   

2.
For a sequence A = {Ak} of finite subsets of N we introduce: δ(A) = infm?nA(m)2n, d(A) = lim infn→∞ A(n)2n, where A(m) is the number of subsets Ak ? {1, 2, …, m}.The collection of all subsets of {1, …, n} together with the operation a ∪ b, (a ∩ b), (a 1 b = a ∪ b ? a ∩ b) constitutes a finite semi-group N (semi-group N) (group N1). For N, N we prove analogues of the Erdös-Landau theorem: δ(A+B) ? δ(A)(1+(2λ)?1(1?δ(A>))), where B is a base of N of the average order λ. We prove for N, N, N1 analogues of Schnirelmann's theorem (that δ(A) + δ(B) > 1 implies δ(A + B) = 1) and the inequalities λ ? 2h, where h is the order of the base.We introduce the concept of divisibility of subsets: a|b if b is a continuation of a. We prove an analog of the Davenport-Erdös theorem: if d(A) > 0, then there exists an infinite sequence {Akr}, where Akr | Akr+1 for r = 1, 2, …. In Section 6 we consider for N∪, N∩, N1 analogues of Rohrbach inequality: 2n ? g(n) ? 2n, where g(n) = min k over the subsets {a1 < … < ak} ? {0, 1, 2, …, n}, such that every m? {0, 1, 2, …, n} can be expressed as m = ai + aj.Pour une série A = {Ak} de sous-ensembles finis de N on introduit les densités: δ(A) = infm?nA(m)2m, d(A) = lim infn→∞ A(n)2nA(m) est le nombre d'ensembles Ak ? {1, 2, …, m}. L'ensemble de toutes les parties de {1, 2, …, n} devient, pour les opérations a ∪ b, a ∩ b, a 1 b = a ∪ b ? a ∩ b, un semi-groupe fini N, N ou un groupe N1 respectivement. Pour N, N on démontre l'analogue du théorème de Erdös-Landau: δ(A + B) ? δ(A)(1 + (2λ)?1(1?δ(A))), où B est une base de N d'ordre moyen λ. On démontre pour N, N, N1 l'analogue du théorème de Schnirelmann (si δ(A) + δ(B) > 1, alors δ(A + B) = 1) et les inégalités λ ? 2h, où h est l'ordre de base. On introduit le rapport de divisibilité des enembles: a|b, si b est une continuation de a. On démontre l'analogue du théorème de Davenport-Erdös: si d(A) > 0, alors il existe une sous-série infinie {Akr}, où Akr|Akr+1, pour r = 1, 2, … . Dans le Paragraphe 6 on envisage pour N, N, N1 les analogues de l'inégalité de Rohrbach: 2n ? g(n) ? 2n, où g(n) = min k pour les ensembles {a1 < … < ak} ? {0, 1, 2, …, n} tels que pour tout m? {0, 1, 2, …, n} on a m = ai + aj.  相似文献   

3.
Let kn ? kn?1 ? … ? k1 be positive integers and let (ij) denote the coefficient of xi in Πr=1j (1 + x + x2 + … + xkr). For given integers l, m, where 1 ? l ? kn + kn?1 + … + k1 and 1 ? m ? (nn), it is shown that there exist unique integers m(l), m(l ? 1),…, m(t), satisfying certain conditions, for which m = (m(l)l + (m(l?1)l?1) + … + (m(t)t). Moreover, any m l-subsets of a multiset with ki elements of type i, i = 1, 2,…, n, will contain at least (m(l)l?1) + (m(l?1)l?2) + … + (m(t)t?1 different (l ? 1)-subsets. This result has been anticipated by Greene and Kleitman, but the formulation there is not completely correct. If k1 = 1, the numbers (ji) are binomial coefficients and the result is the Kruskal-Katona theorem.  相似文献   

4.
Suppose r = (r1, …, rM), rj ? 0, γkj ? 0 integers, k = 1, 2, …, N, j = 1, 2, …, M, γk · r = ∑jγkjrj. The purpose of this paper is to study the behavior of the zeros of the function h(λ, a, r) = 1 + ∑j = 1Naje?λγj · r, where each aj is a nonzero real number. More specifically, if Z?(a, r) = closure{Re λ: h(λ, a, r) = 0}, we study the dependence of Z?(a, r) on a, r. This set is continuous in a but generally not in r. However, it is continuous in r if the components of r are rationally independent. Specific criterion to determine when 0 ? Z?(a, r) are given. Several examples illustrate the complicated nature of Z?(a, r). The results have immediate implication to the theory of stability for difference equations x(t) ? ∑k = 1MAkx(t ? rk) = 0, where x is an n-vector, since the characteristic equation has the form given by h(λ, a, r). The results give information about the preservation of stability with respect to variations in the delays. The results also are fundamental for a discussion of the dependence of solutions of neutral differential difference equations on the delays. These implications will appear elsewhere.  相似文献   

5.
Let a complex pxn matrix A be partitioned as A′=(A1,A2,…,Ak). Denote by ?(A), A′, and A? respectively the rank of A, the transpose of A, and an inner inverse (or a g-inverse) of A. Let A(14) be an inner inverse of A such that A(14)A is a Hermitian matrix. Let B=(A(14)1,A(14)2,…,Ak(14)) and ρ(A)=i=1kρ(Ai).Then the product of nonzero eigenvalues of BA (or AB) cannot exceed one, and the product of nonzero eigenvalues of BA is equal to one if and only if either B=A(14) or Ai>Aj1=0 for all ij,i, j=1,2,…,k . The results of Lavoie (1980) and Styan (1981) are obtained as particular cases. A result is obtained for k=2 when the condition ρ(A)=i=1kρ(Ai) is no longer true.  相似文献   

6.
We study expansions in polynomials {Pn(x)}o generated by ∑n = oPn(x)tn = A(t) φ(xtkθ(t)), θ(0) ≠ 0, and ∑n = 0Pn(x)tn = ∑kj = 1Aj(t) φ(xt?j), ?1,…,?k being the k roots of unity. The case k = 1 is contained in a recent work by Fields and Ismail. We also prove a new generalization of Vandermond's inverse relations.  相似文献   

7.
Let xi ≥ 0, yi ≥ 0 for i = 1,…, n; and let aj(x) be the elementary symmetric function of n variables given by aj(x) = ∑1 ≤ ii < … <ijnxiixij. Define the partical ordering x <y if aj(x) ≤ aj(y), j = 1,… n. We show that x $?y ? xα$?yα, 0 $?α ≤ 1, where {xα}i = xαi. We also give a necessary and sufficient condition on a function f(t) such that x <y ? f(x) <f(y). Both results depend crucially on the following: If x <y there exists a piecewise differentiable path z(t), with zi(t) ≥ 0, such that z(0) = x, z(1) = y, and z(s) <z(t) if 0 ≤ st ≤ 1.  相似文献   

8.
For 1 ≦ lj, let al = ?h=1q(l){alh + Mv: v = 0, 1, 2,…}, where j, M, q(l) and the alh are positive integers such that j > 1, al1 < … < alq(2)M, and let al = al ∪ {0}. Let p(n : B) be the number of partitions of n = (n1,…,nj) where, for 1 ≦ lj, the lth component of each part belongs to Bl and let p1(n : B) be the number of partitions of n into different parts where again the lth component of each part belongs to Bl. Asymptotic formulas are obtained for p(n : a), p1(n : a) where all but one nl tend to infinity much more rapidly than that nl, and asymptotic formulas are also obtained for p(n : a′), p1(n ; a′), where one nl tends to infinity much more rapidly than every other nl. These formulas contrast with those of a recent paper (Robertson and Spencer, Trans. Amer. Math. Soc., to appear) in which all the nl tend to infinity at approximately the same rate.  相似文献   

9.
The probability generating function (pgf) of an n-variate negative binomial distribution is defined to be [β(s1,…,sn)]?k where β is a polynomial of degree n being linear in each si and k > 0. This definition gives rise to two characterizations of negative binomial distributions. An n-variate linear exponential distribution with the probability function h(x1,…,xn)exp(Σi=1n θixi)f(θ1,…,θn) is negative binomial if and only if its univariate marginals are negative binomial. Let St, t = 1,…, m, be subsets of {s1,…, sn} with empty ∩t=1mSt. Then an n-variate pgf is of a negative binomial if and only if for all s in St being fixed the function is of the form of the pgf of a negative binomial in other s's and this is true for all t.  相似文献   

10.
Optimization problems are connected with maximization of three functions, namely, geometric mean, arithmetic mean and harmonic mean of the eigenvalues of (XΣX)?1ΣY(YΣY)?1YΣX, where Σ is positive definite, X and Y are p × r and p × s matrices of ranks r and s (≥r), respectively, and XY = 0. Some interpretations of these functions are given. It is shown that the maximum values of these functions are obtained at the same point given by X = (h1 + ?1hp, …, hr + ?rhp?r+1) and Y = (h1 ? ?1hp, …, hr ? ?rhp?r+1, Yr+1, …, Ys), where h1, …, hp are the eigenvectors of Σ corresponding to the eigenvalues λ1 ≥ λ2 ≥ … ≥ λp > 0, ?j = +1 or ?1 for j = 1,2,…, r and Yr+1, …, Ys, are linear functions of hr+1,…, hp?r. These results are extended to intermediate stationary values. They are utilized in obtaining the inequalities for canonical correlations θ1,…,θr and they are given by expressions (3.8)–(3.10). Further, some new union-intersection test procedures for testing the sphericity hypothesis are given through test statistics (3.11)–(3.13).  相似文献   

11.
Let Ω be a finite set with k elements and for each integer n ≧ 1 let Ωn = Ω × Ω × … × Ω (n-tuple) and Ωn = {(a1, a2,…, an) | (a1, a2,…, an) ∈ Ωn and ajaj+1 for some 1 ≦ jn ? 1}. Let {Ym} be a sequence of independent and identically distributed random variables such that P(Y1 = a) = k?1 for all a in Ω. In this paper, we obtain some very surprising and interesting results about the first occurrence of elements in Ωn and in Ω?n with respect to the stochastic process {Ym}. The results here provide us with a better and deeper understanding of the fair coin-tossing (k-sided) process.  相似文献   

12.
Let pk(A), k=2,…,n, denote the sum of the permanents of all k×k submatrices of the n×n matrix A. A conjecture of Ðokovi?, which is stronger than the famed van der Waerden permanent conjecture, asserts that the functions pk((1?θ)Jn+;θA), k=2,…, n, are strictly increasing in the interval 0?θ?1 for every doubly stochastic matrix A. Here Jn is the n×n matrix all whose entries are equal 1n. In the present paper it is proved that the conjecture holds true for the circulant matrices A=αIn+ βPn, α, β?0, α+;β=1, and A=(nJn?In?Pn)(n?2), where In and Pn are respectively the n×n identify matrix and the n×n permutation matrix with 1's in positions (1,2), (2,3),…, (n?1, n), (n, 1).  相似文献   

13.
Real constant coefficient nth order elliptic operators, Q, which generate strongly continuous semigroups on L2(Rk) are analyzed in terms of the elementary generator,
A = (?n)(n2 ? 1)(n!)?1kj = 1?n?xjn
, for n even. Integral operators are defined using the fundamental solutions pn(x, t) to ut = Au and using real polynomials ql,…, qk on Rm by the formula, for q = (ql,…, qk),
(F(t)?)(x) = ∫
Rm
?(x + q(z)) Pn(z, t)dz
. It is determined when, strongly on L2(Rk),
etQ = limj → ∞ Ftjj
. If n = 2 or k = 1, this can always be done. Otherwise the symbol of Q must have a special form.  相似文献   

14.
Let At(i, j) be the transition matrix at time t of a process with n states. Such a process may be called self-adjusting if the occurrence of the transition from state h to state k at time t results in a change in the hth row such that At+1(h, k) ? At(h, k). If the self-adjustment (due to transition hkx) is At + 1(h, j) = λAt(h, j) + (1 ? λ)δjk (0 < λ < 1), then with probability 1 the process is eventually periodic. If A0(i, j) < 1 for all i, j and if the self-adjustment satisfies At + 1(h, k) = ?(At(h, k)) with ?(x) twice differentiable and increasing, x < ?(x) < 1 for 0 ? x < 1,?(1) = ?′(1) = 1, then, with probability 1, lim At does not exist.  相似文献   

15.
A t-spread set [1] is a set C of (t + 1) × (t + 1) matrices over GF(q) such that ∥C∥ = qt+1, 0 ? C, I?C, and det(X ? Y) ≠ 0 if X and Y are distinct elements of C. The amount of computation involved in constructing t-spread sets is considerable, and the following construction technique reduces somewhat this computation. Construction: Let G be a subgroup of GL(t + 1, q), (the non-singular (t + 1) × (t + 1) matrices over GF(q)), such that ∥G∥|at+1, and det (G ? H) ≠ 0 if G and H are distinct elements of G. Let A1, A2, …, An?GL(t + 1, q) such that det(Ai ? G) ≠ 0 for i = 1, …, n and all G?G, and det(Ai ? AjG) ≠ 0 for i > j and all G?G. Let C = &{0&} ∪ G ∪ A1G ∪ … ∪ AnG, and ∥C∥ = qt+1. Then C is a t-spread set. A t-spread set can be used to define a left V ? W system over V(t + 1, q) as follows: x + y is the vector sum; let e?V(t + 1, q), then xoy = yM(x) where M(x) is the unique element of C with x = eM(x). Theorem: LetCbe a t-spread set and F the associatedV ? Wsystem; the left nucleus = {y | CM(y) = C}, and the middle nucleus = }y | M(y)C = C}. Theorem: ForCconstructed as aboveG ? {M(x) | x?Nλ}. This construction technique has been applied to construct a V ? W system of order 25 with ∥Nλ∥ = 6, and ∥Nμ∥ = 4. This system coordinatizes a new projective plane.  相似文献   

16.
The author discusses the best approximate solution of the functional differential equation x′(t) = F(t, x(t), x(h(t))), 0 < t < l satisfying the initial condition x(0) = x0, where x(t) is an n-dimensional real vector. He shows that, under certain conditions, the above initial value problem has a unique solution y(t) and a unique best approximate solution p?k(t) of degree k (cf. [1]) for a given positive integer k. Furthermore, sup0?t?l ¦ p?k(t) ? y(t)¦ → 0 as k → ∞, where ¦ · ¦ is any norm in Rn.  相似文献   

17.
18.
Let H be a self-adjoint operator on a complex Hilbert space H. The solution of the abstract Schrödinger equation idudt = Hu is given by u(t) = exp(?itH)u(0). The energy E = ∥u(t)∥2 is independent of t. When does the energy break up into different kinds of energy E = ∑j = 1NEj(t) which become asymptotically equipartitioned ? (That is, Ej(t) → ENas t → ± ∞ for all j and all data u(0).) The “classical” case is the abstract wave equation d2vdt2 + A2v = 0 with A self-adjoint on H1. This becomes a Schrödinger equation in a Hilbert space H (essentially H is two copies of H1), and there are two kinds of associated energy, viz., kinetic and potential. Two kinds of results are obtained. (1) Equipartition of energy is related to the C1-algebra approach to quantum field theory and statistical mechanics. (2) Let A1,…, AN be commuting self-adjoint operators with N = 2 or 4. Then the equation Πj = 1N (ddt ? iAj) u(t) = 0 admits equipartition of energy if and only if exp(it(Aj ? Ak)) → 0 in the weak operator topology as t → ± ∞ for jk.  相似文献   

19.
A lower (upper) bound is given for the distribution of each dj, j = k + 1, …, p (j = 1, …, s), the jth latent root of AB?1, where A and B are independent noncentral and central Wishart matrices having Wp(q, Σ; Ω) with rank (Ω) ≤ k = p ? s and Wp(n, Σ), respectively. Similar bound are also given for the distributions of noncentral means and canonical correlations. The results are applied to obtain lower bounds for the null distributions of some multivariate test statistics in Tintner's model, MANOVA and canonical analysis.  相似文献   

20.
In this paper we study linear differential systems (1) x′ = A?(θ + ωt)x, whereA?(θ) is an (n × n) matrix-valued function defined on the k-torus Tk and (θ, t) → θ + ωt is a given irrational twist flow on Tk. First, we show that if A ? CN(Tk), where N ? {0, 1, 2,…; ∞; ω}, then the spectral subbundles are of class CN on Tk. Next we assume that à is sufficiently smooth on Tk and ω satisfies a suitable “small divisors” inequality. We show that if (1) satisfies the “full spectrum” assumption, then there is a quasi-periodic linear change of variables x = P(t)y that transforms (1) to a constant coefficient system y′ =By. Finally, we study the case where the matrix A?(θ + ωt) in (1) is the Jacobian matrix of a nonlinear vector field ?(x) evaluated along a quasi-periodic solution x = φ(t) of (2) x′ = ?(x). We give sufficient conditions in terms of smoothness and small divisors inequalities in order that there is a coordinate system (z, ?) defined in the vicinity of Ω = H(φ), the hull of φ, so that the linearized system (1) can be represented in the form z′ = Dz, ?′ = ω, where D is a constant matrix. Our results represent substantial improvements over known methods because we do not require that à be “close to” a constant coefficient system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号