首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 31 毫秒
1.
In this paper, all electro-optic solid immersion lens (EOSIL) is introduced, which is made of GaAs. A reflecting external electro-optic measuring system based on the EOSIL is built. With a hemispherical GaAs EOSIL used as the external probe, 0.7 µm spot size is obtained when the wavelength of the probing beam from a laser diode is 1.3 µm and a microscope objective with 0.3 numerical aperture is used. The principle of the measuring system is analyzed by Jones matrix. By using the system, the electrical signals propagating on a microstrip transmission line are successfully measured. The voltage sensitivity about 5 mV/ is measured when 10 kHz sinusoidal electric signal is applied on the microstrip line.  相似文献   

2.
Realization of a near-field optical virtual probe based on an evanescent Bessel beam is strongly dependent on a radially polarized beam; this makes it essential to study the focusing property of the beam. In this paper, two experimental setups based on a fiber device and a liquid crystal device, respectively, are built to generate a radially polarized beam. This beam and an annular radially polarized beam are focused by means of a high numerical aperture objective and a solid immersion lens (SIL). Near-field distribution of the focus spot, the evanescent Bessel field, is experimentally measured with a scanning near-field optical microscope (SNOM). The full width at half maximum (FWHM) of the central peak of the evanescent Bessel field is about 200 nm in the close vicinity of the bottom surface of SIL. This has potential for use as a near-field optical virtual probe.  相似文献   

3.
用角谱方法分析固体浸没透镜的近场光场   总被引:6,自引:1,他引:5  
固体浸没透镜在超高度近场光存储和超分辨率显微观测中具有独特的作用,本文利用角谱理论并计及光波的矢量特性,分析了固体浸没透镜的近场矢量光场特性,给出了它的光场图样,并着重讨论了线偏光入射条件下,出射光场的偏振状态。  相似文献   

4.
刘永峰  张明辉  沈夏  魏青  韩申生 《光学学报》2007,27(11):2075-2081
随着研究工作的逐步深入,目前已经利用经典热光源实现了关联衍射成像,使得该技术有望在X射线以及中子衍射成像等方面得到广泛应用。在实验利用非相干光得到物体无透镜傅里叶变换频谱的基础上,采用误差消除与输入输出恢复算法,并结合过采样理论,实现了实验所用物体透射率函数的恢复。分别得到了纯振幅物体的振幅分布函数与纯相位物体的相位分布函数。此外,还讨论了实验所得傅里叶变换频谱的噪声等因素对图像恢复结果的影响。  相似文献   

5.
赵敏  王占山  马彬  李佛生 《光学学报》2008,28(2):381-386
采用量子模型对近共振激光驻波原子透镜会聚Cr原子束、形成纳米量级光栅结构的物理过程进行数值模拟。为提高原子透镜的成像质量,对各种像差,如衍射像差、球差、色差、及原子束发散角、原子磁支能级、原子同位素等因素引起的像差进行了理论分析。模拟结果表明,相比粒子光学模型,量子模型能更加精确地描述原子会聚结果,且能解释原子在驻波光场中的衍射现象。在各种像差中,原子束发散角是最主要的因素,其影响大于衍射像差、球差、色差。原子的磁支能级、同位素等因素对像差影响很小,可以忽略不计。激光冷却准直原子束的方法可以减小束发散角引起的像差,压缩原子速度Vz分布范围的方法可以减小色差。  相似文献   

6.
Radially polarized incident light can generate a more confined longitudinal electric field on a focal plane in near-field (NF) optics than focusing circularly polarized light. Using this phenomenon, it is feasible to reduce beam spot size on storage media to increase the areal density of optical data storage. A radially polarized beam generates a beam spot which is 20% more confined on the 1st surface of medium than that of circularly polarized light. However, the peak intensity of total electric field sharply decreases and its transverse component is much more dominant inside the media stack. This confirms that radially polarized optics can be a candidate not for an NF recording system but for an NF read-only memory (ROM) system. Potentially, the results could be useful to understand the effect of radial and circular polarizations inside and outside medium for various applications of NF optics.  相似文献   

7.
We demonstrate high-resolution fluorescence imaging of single molecules using near-field scanning optical microscopy (NSOM) with a tiny aperture probe for two different wavelengths in visible range in the illumination mode of operation. The spatial resolutions obtained at both excitation wavelengths were almost the same and the highest resolution realized was about 10 nm. To discuss the achievable resolution in aperture NSOM, we also employed a computer simulation by the finite-difference time-domain method for various aperture sizes and wavelengths. The resolution of 10 nm is predicted to be contributed by the single peak of localized near-field light around the rim of the aperture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号