首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The spin-label method was used to study the structure and molecular motion of poly(ethylene oxide) (PEO) chains adsorbed on a silica-tethered poly(methyl methacrylate) (PMMA). Spin-labelled PEO with a narrow molecular weight distribution, having number averaged molecular weight (M N)=6.0×103, was adsorbed on the surface of the silica-tethered PMMA with various grafting ratios in carbon tetrachloride solution at 35?°C. ESR spectra were measured at various temperatures after the samples were completely dried. The ESR spectra are composed of two spectra arising from spin-labels attached to “train” and “tail” segments, which are strongly and weakly interacted with the silica surface, respectively. The fractional amount of the “tail” segments increases extremely with the grafting ratio of PMMA. Molecular mobility of the PEO chains estimated from the temperature dependence of the ESR spectra also decreases significantly with the grafting ratio of PMMA. Structure and molecular motion of the PMMA chains tethered on the silica were also studied using the spin-labelled PMMA. Consequently, parts of the PEO segments penetrate into the PMMA chains and is adsorbed on the silica surface (“train” segments), whereas parts of the PMMA segments protrude from the surface. The other PEO segments are entangled with the tethered PMMA chains (“tail” segments).  相似文献   

2.
EPR spectroscopy of labeled poly(ethylene oxide) (PEO) grafted on silica has been used to characterize the conformation and local dynamics of the chains. Grafted molecules of MW 2000 with grafting ratios of 0.045, 0.057, 0.126, and 0.42 molecules/nm2 were in contact with benzene. The mobility of the label was compared with that observed for solution of PEO from very diluted to highly concentrated and even bulk PEO. Thus, the concentration inside the grafted layer could be evaluated and also the thickness, which evolves rather linearly with the grafting ratio. © 1995 John Wiley & Sons, Inc.  相似文献   

3.
The grafting of the potassium alkoxide derivative of poly(ethylene oxide) on poly(methyl methacrylate) in homogeneous solution in toluene was studied. The alkoxide was prepared by reaction with potassium metal with methanolic potassium methoxide, or with potassium naphthalene. The last was the most suitable for the systematic investigation of the grafting process. Soluble graft polymers were formed, and essentially the initial poly(ethylene oxide) (PEO) and poly(methyl methacrylate) (PMMA) participated in the production of graft polymer. The composition of the graft polymers and the frequency of grafting of the side chains were determined by NMR. The solubility of the graft polymers in methanol and water increased with increasing PEO contents, while the melting ranges decreased. Fractionation of the crude graft polymers showed that the grafting reaction was random, and graft polymers containing one PEO side chain per about 10–170 MMA units were obtained.  相似文献   

4.
Summary: The grafting of poly(ethylene oxide) (PEO) onto silica nanoparticles was performed in situ by the ring‐opening polymerization of the oxirane monomer initiated from the mineral surface using aluminium isopropoxide as an initiator/heterogeneous catalyst. Alcohol groups were first introduced onto silica by reacting the surfacic silanols with prehydrolyzed 3‐glycidoxypropyl trimethoxysilane. The alcohol‐grafted silica played the role of a coinitiator/chain‐transfer agent in the polymerization reaction and enabled the formation of irreversibly bonded polymer chains. Silica nanoparticles containing up to 40 wt.‐% of a hairy layer of grafted PEO chains were successfully produced by this technique.

The grafting of poly(ethylene oxide) (PEO) onto silica nanoparticles by in‐situ ring‐opening polymerization of the oxirane monomer.  相似文献   


5.
Aqueous solutions of alpha-cyclodextrin (alpha-CD) complex spontaneously with poly(ethylene oxide) (PEO), forming a supramolecular structure known as pseudopolyrotaxane. We have studied the formation of the complex obtained from the threading of alpha-CD onto PEO, both free in solution and adsorbed on colloidal silica. The kinetics of the reaction were studied by gravimetric methods and determined as a function of temperature and solvent composition for the PEO free in solution. PEO was then adsorbed on the surface of colloidal silica particles, and the monomers were displaced by systematically varying the degree of complexation, the concentration of particles, and the molecular weight of the polymer. The effect of the size of the silica particles on the yield of the reaction was also studied. With the adsorbed PEO, the complexation was found to be partial and to take place from the tails of the polymer. The formation of a gel network containing silica at high degrees of complexation was observed. Small-angle X-ray and neutron scattering experiments were performed to study the configuration of the polymeric chains and confirmed the partial desorption of the polymer from the surface of the silica upon complexation.  相似文献   

6.
Novel cationic polyelectrolytes with a brush-on-brush structure of poly(ethylene oxide) (PEO) side chains and a charge-containing polyacrylate backbone were synthesized. The PEO side chains were not directly attached to the backbone but via polymethacrylate spacers, thus locating the PEO chains a distance away from the charged units of the backbone. The cationic brush-on-brush polyelectrolytes with high density of PEO chains showed a strong affinity to silica surfaces, provided the backbone charge density was high enough. The adsorption of these polymers was studied by QCM-D giving very high sensed mass, 20 mg/m2. It was shown by direct force measurements that protective surface layers were formed by the novel polyelectrolytes, generating strongly repulsive steric forces, which provided an effective barrier against flocculation. The adsorbed layer was sufficiently robust to withstand sliding experiments under a pressure of up to 35 MPa. The friction force in water was very low, and the lubrication was characterized by a friction coefficient in the range of 0.02-0.06.  相似文献   

7.
Mesoporous silica was synthesized by hydrolysis of tetraethylorthosilicate (TEOS, formula Si(OCH2CH3)4) at ambient temperature in a basic ethanol-water solution, with cetyltrimethyl ammonium bromide as a template. It had a surface area of approximately 1,400 m2/g, and an average pore diameter of approximately 40 Å. Portions were blended into three samples of poly(ethylene oxide) (PEO) of varying molecular weights, in the hope of making novel composites by penetrating some of the PEO chains into the silica channels. Differential Scanning Calorimetry (DSC) and X-ray diffraction (XRD) were used to characterize the structures of the PEO/mesoporous silica composites after they were held at 100 °C for up to 30 min. In both experiments, the melting temperature of the PEO decreased and ultimately disappeared. These results suggest that the PEO chains did penetrate into the silica pores, and since they were constrained in the pores, their crystallization was suppressed. This provides an interesting parallel to the disappearance of the glass transition temperatures of polymers constrained in the cavities of zeolites or in the galleries of intercalated clays.  相似文献   

8.
We have developed a two‐stage process to graft poly(ethylene oxide) (PEO) onto a silica surface. In the first stage the adsorption of an anchor reactive polymer to the surface is carried out, and in the second stage the grafting of compatibilizing macromolecular tails is performed via the reactions of functional groups of the polymer anchored. Random copolymers of styrene and maleic anhydride (SM) were chosen as reactive anchoring polymers. The kinetics of adsorption of SM from dilute solutions onto the silica surface as well as the grafting of PEO to SM macromolecules adsorbed was experimentally investigated by null ellipsometry. A model of the structure at the surface is proposed.  相似文献   

9.
The structure of poly(ethylene oxide) (PEO, M(w) = 526) brushes of various grafting density (sigma) on nonpolar graphite and hydrophobic (oily) surfaces in aqueous solution has been studied using atomistic molecular dynamics simulations. Additionally, the influence of PEO-surface interactions on the brush structure was investigated by systematically reducing the strength of the (dispersion) attraction between PEO and the surfaces. PEO chains were found to adsorb strongly to the graphite surface due primarily to the relative strength of dispersion interactions between PEO and the atomically dense graphite compared to those between water and graphite. For the oily surface, PEO-surface and water-surface dispersion interactions are much weaker, greatly reducing the energetic driving force for PEO adsorption. This reduction is mediated to some extent by a hydrophobic driving force for PEO adsorption on the oily surface. Reduction in the strength of PEO-surface attraction results in reduced adsorption of PEO for both surfaces, with the effect being much greater for the graphite surface where the strong PEO-surface dispersion interactions dominate. At high grafting density (sigma approximately 1/R(g)(2)), the PEO density profiles exhibited classical brush behavior and were largely independent of the strength of the PEO-surface interaction. With decreasing grafting density (sigma < 1/R(g)(2)), coverage of the surface by PEO requires an increasingly large fraction of PEO segments resulting in a strong dependence of the PEO density profile on the nature of the PEO-surface interaction.  相似文献   

10.
The adsorption behavior of poly(ethylene oxide)-b-poly(L-lysine) (PEO(113)-b-PLL(10)) copolymer onto silica nanoparticles was investigated in phosphate buffer at pH 7.4 by means of dynamic light scattering, zeta potential, adsorption isotherms and microcalorimetry measurements. Both blocks have an affinity for the silica surface through hydrogen bonding (PEO and PLL) or electrostatic interactions (PLL). Competitive adsorption experiments from a mixture of PEO and PLL homopolymers evidenced greater interactions of PLL with silica while displacement experiments even revealed that free PLL chains could desorb PEO chains from the particle surface. This allowed us to better understand the adsorption mechanism of PEO-b-PLL copolymer at the silica surface. At low surface coverage, both blocks adsorbed in flat conformation leading to the flocculation of the particles as neither steric nor electrostatic forces could take place at the silica surface. The addition of a large excess of copolymer favoured the dispersion of flocs according to a presumed mechanism where PLL blocks of incoming copolymer chains preferentially adsorbed to the surface by displacing already adsorbed PEO blocks. The gradual addition of silica particles to an excess of PEO-b-PLL copolymer solution was the preferred method for particle coating as it favoured equilibrium conditions where the copolymer formed an anchor-buoy (PLL-PEO) structure with stabilizing properties at the silica-water interface.  相似文献   

11.
This work reports on the first comprehensive characterization of octadecyl (C(18)) modified MCM-41 silica spheres, prepared via the pseudomorphic route, followed by grafting with mono- or trifunctional octadecyl (C(18)) alkyl chains and endcapping with hexamethyldisilazane. Small angle X-ray scattering (SAXS), nitrogen adsorption-desorption and scanning electron microscopy (SEM) measurements were performed to obtain information about the MCM-41 pore structure, surface properties and morphological features. The degree of grafting and cross-linking of the silanes were determined by (29)Si magic angle spinning NMR spectroscopy, while FTIR and (13)C NMR were employed to study the conformational behavior of the surface-immobilized alkyl chains. The SAXS pattern proved the existence of a hexagonal mesopore arrangement for both the ungrafted and the grafted MCM-41 silica spheres. In addition, there is evidence of some long-range distortion in the pore structure. SEM measurements revealed the same morphological features for the parent silica and the MCM-41 silica spheres before and after C(18) grafting. The achieved surface loading for the MCM-41 material is rather low. It was also shown that a substantial amount of the accessible surface silanol groups is endcapped by trimethylsilane which in turn results in a very low surface coverage due to the octadecyl chains. The nitrogen sorption studies provided values for the surface area, total pore volume and pore diameter which are very typical for mesoporous materials. The reduction in surface area and total pore volume upon surface grafting is related to the binding of trimethylsilane in the interior of the pores, while due to the spatial restrictions octadecyl chains are primarily attached near the pore entrance. The experimental FTIR and (13)C NMR data point to a very low conformational order of the C(18) chains which is in accordance with the observed low surface coverage and the resulting spatial freedom for these surface-immobilized alkyl chains.  相似文献   

12.
Peptide Nucleic Acids (PNAs) linked to high molecular weight (MW) poly(ethylene oxide) (PEO) derivatives could be useful conjugates for the direct functionalisation of gold surfaces dedicated to Surface Plasmon Resonance (SPR)-based DNA sensing. However their use is hampered by the difficulty to obtain them through a convenient and economical route. In this work we compared three synthetic strategies to obtain PNA-high MW PEO conjugates composed of (a) a 15-mer PNA sequence as the probe complementary to genomic DNA of Mycobacterium tuberculosis, (b) a PEO moiety (2 or 5 KDa MW) and (c) a terminal trityl-protected thiol necessary (after acidic deprotection) for grafting to gold surfaces. The 15-mer PNA was obtained by solid-phase synthesis. Its amino terminal group was later condensed to bi-functional PEO derivatives (2 and 5 KDa MW) carrying a Trt-cysteine at one end and a carboxyl group at the other end. The reaction was carried out either in solution, using HATU or PyOxim as coupling agents, or through the solid-phase approach, with 49.6%, 100% and 5.2% yield, respectively. A differential solvent extraction strategy for product purification without the need for chromatography is described. The ability of the 5 KDa PEO conjugate to function as a probe for complementary DNA detection was demonstrated using a Grating-Coupling Surface Plasmon Resonance (GC-SPR) system. The optimized PEO conjugation and purification protocols are economical and simple enough to be reproduced also within laboratories that are not highly equipped for chemical synthesis.  相似文献   

13.
We compare two routes for creating protein adsorption-resistant self-assembled monolayers (SAMs) by chemical modification of silicon surfaces with poly(ethylene oxide) (PEO) oligomeric derivatives. The first route involves the assembly of 2-methyl[(polyethyleneoxy)propyl]trichlorosilane (Cl3SiMPEO) films onto oxidized silicon surfaces (OH-SiO(x)) either by a liquid-phase process at room temperature or by a gas-phase process at 423 K, producing Si-O-Si bonds between the substrate and the organic layer. The second pathway makes use of the assembly of poly(ethylene glycol methyl ether) (MPEG) films onto hydrogen-passivated silicon surfaces (H-Si) using a liquid-phase process at 353 or 423 K, leading to the formation of Si-O-C bonds between the substrate and the organic layer. Structural investigation by X-ray reflectometry (XRR) reveals that the thickness and surface densities of the grafted PEO monolayers strongly depend on experimental conditions such as temperature and grafting time. Atomic force microscopy (AFM) shows that very smooth and homogeneous monolayers can be obtained with average roughnesses close to those measured on the corresponding bare substrates. Finally, the antifouling properties of the modified silicon surfaces were evaluated by X-ray photoelectron spectroscopy (XPS), using a membrane protein (P.69 antigen) as model protein. Both types of PEO monolayers exhibit excellent protein repellency, as soon as the grafting density is equal to or higher than 1.7 chains/nm2.  相似文献   

14.
The crystallization and melting behavior of a series of poly(glycerol adipate) (PGA) based graft copolymers with either poly(ε‐caprolactone) (PCL), poly(ethylene oxide) (PEO), or PCL‐b‐PEO diblock copolymer side chains (i.e., PGA‐g‐PCL, PGA‐g‐PEO, and PGA‐g‐(PCL‐b‐PEO)) was studied using polarized light optical microscopy (POM), differential scanning calorimetry (DSC), small‐angle X‐ray scattering (SAXS), and wide‐angle X‐ray diffraction (WAXD). These results were compared with the behavior of the corresponding linear analogs (PEO, PCL, and PCL‐b‐PEO). POM revealed that spherulitic morphology was retained after grafting. However, spherulite radius as well as radial growth rate was significantly smaller in the graft copolymers. Evaluation of isothermal crystallization kinetics by means of the Avrami theory revealed that the nucleation density was much higher in the graft copolymers. The DSC results indicated that the degree of crystallinity decreased strongly upon grafting while the melting temperatures of PGA‐g‐PCL and PGA‐g‐PEO were found to be close to the values of neat PCL and PEO, respectively. This was attributed to the absence of specific thermodynamic interactions, and, additionally, to lamella thicknesses being similar to those of the homopolymers. The latter point was confirmed by SAXS measurements. In case of PCL‐b‐PEO diblock copolymers and PGA‐g‐(PCL‐b‐PEO) graft copolymers, the crystallization behavior and thus the resulting lamellar morphology is more complex, and a suitable model was developed based on a combination of DSC, WAXD, and SAXS data. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2013 , 51, 1581–1591  相似文献   

15.
The retention behavior of low- and high-molecular-mass poly(ethylene oxide) (PEO) in reversed-phase (RP) and normal-phase (NP) liquid chromatography was investigated. In RPLC using a C18 bonded silica stationary phase and an acetonitrile-water mixture mobile phase, the sorption process of PEO to the stationary phase showed deltaH(o) > 0 and deltaS(o) > 0. Therefore, PEO retention in RPLC separation is an energetically unfavorable, entropy-driven process, which results in an increase of PEO retention as the temperature increases. In addition, at the enthalpy-entropy compensation point the elution volume of PEO was very different from the column void volume. These observations are quite different from the RPLC retention behavior of many organic polymers. The peculiar retention behavior of PEO in RPLC separation can be understood in terms of the hydrophobic interaction of this class of typical amphiphilic compounds with the non-polar stationary phase, on the one hand, and with the aqueous mobile phase, on the other. The entropy gain due to the release of the solvated water molecules from the PEO chain and the stationary phase is believed to be responsible for the entropy-driven separation process. On the other hand, in NPLC using an amino-bonded silica stationary phase and an acetonitrile-water mixture mobile phase, PEO showed normal enthalpy-driven retention behavior: deltaH(o) < 0 and deltaS(o) < 0, with the retention decreasing with increasing temperature and PEO eluting near the column void volume at the enthalpy-entropy compensation point. Therefore, high-resolution temperature gradient NPLC separation of high-molecular-mass PEO samples can be achieved with relative ease. The molecular mass distribution of high-molecular-mass PEO was found to be much narrower than that measured by size-exclusion chromatography.  相似文献   

16.
Abstract

Graft copolymers with uniform polyoxyethylene (PEO) side chains were synthesized by transesterification of poly(methyl, ferf-butyl fumarate) (PMtBF) or poly(methyl, tert-butyl fumarate-co-styrene) poly-(MtBF-co-St) with potassium alkoxide of PEO monoether. The grafting efficiency increased with enhanced alkoxide reactivity, but the main factor in the ester exchange proved to be the structure of the backbone. This effect was ascribed to the thermodynamic incompatibility between fumaric polymers and PEO. The polymers were characterized by spectral methods, GPC, and DSC. In THF the graft copolymers comprising a polyfumarate backbone with PEO side chains eluted at higher elution volumes than did the backbone homopolymers. In benzene their intrinsic viscosities were lower than those of the backbones. In aqueous eluents, micelles were detected, and their aggregation number depended on the composition of the copolymer and the eluent.  相似文献   

17.
A series of silica nano-particles with different size were prepared by sol–gel technique, then surface modification by using cyclic carbonate functional organoalkoxysilane (CPS) was performed. Various amounts of carbonated silica particles directly added into carbonated soybean oil (CSBO) and carbonated polypropylene glycol (CPPG) resin mixture to prepare polyurethane–silica nanocomposite coating compositions by nonisocyanate route using an aliphatic diamine as a curing agent. Cupping, gloss, impact, and taber abrasion tests were performed on aluminum panels coated with those nano-composite formulations and tensile tests, thermogravimetric and SEM analyses were conducted on the free films prepared from the same coating formulations. An increase in abrasion resistance of CSBO-CPPG resin combination with the addition of silica was observed. In addition, the maximum weight loss of CSBO-CPPG resin combination was shifted to higher temperatures with incorporation of silica nano-particles The positive effect of modified silica particles on thermal stability of CSBO-CPPG system could be explained in such a way that PPG chains are able to disperse particles in the medium throughout the interactions between ether linkages and silanol groups.  相似文献   

18.
We covalently immobilized poly(ethylene oxide) (PEO) chains onto a fluorinated ethylene propylene copolymer (FEP) surface. On the FEP surface, aldehyde groups were first deposited by plasma polymerization of acetaldehyde or acrolein. Then, amino‐PEO chains were immobilized through Schiff base formation, which was followed by reduction stabilization with sodium cyanoborohydride. The PEO‐grafted polymer surfaces thus prepared were characterized by X‐ray photoelectron spectroscopy (XPS), atomic force microscopy, contact‐angle measurements, and protein adsorption. The dramatic increase in the C O intensity of the high‐resolution XPS C 1s spectrum, together with an overall increase in oxygen content, indicated the successful attachment of PEO chains onto the acetaldehyde plasma surfaces. The amount of grafted PEO chains depended on the superfacial density of the plasma‐generated aldehyde groups. The grafted monoamino‐PEO chains formed a brushlike structure on the polymer surface, whereas the bisamino‐PEO chains predominately adopted a looplike conformation. The PEO surface had a regular morphology with greater roughness than the aldehyde surface underneath. Surface hydrophilicity increased with the grafting of PEO. Also, the bisamino‐PEO‐grafted surface had slightly higher surface hydrophilicity than its monoamino‐PEO counterpart. These PEO coatings reduced fibrinogen adsorption by 43% compared with the substrate FEP surface. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 2323–2332, 2000  相似文献   

19.
BSA adsorption onto bimodal PEO brushes at a solid surface was measured using optical reflectometry. Bimodal brushes consist of long (N=770) and short (N=48) PEO chains and were prepared on PS surfaces, applying mixtures of PS(29)-PEO(48) and PS(37)-PEO(770) block copolymers and using the Langmuir-Blodgett technique. Pi-A isotherms of (mixtures of) the block copolymers were measured to establish the brush regime. The isotherms of PS(29)-PEO(48) show hysteresis between compression and expansion cycles, indicating aggregation of the PS(29)-PEO(48) upon compression. Mixtures of PS(29)-PEO(48) and PS(37)-PEO(770) demonstrate a similar hysteresis effect, which eventually vanishes when the ratio of PS(37)-PEO(770) to PS(29)-PEO(48) is increased. The adsorption of BSA was determined at brushes for which the grafting density of the long PEO chains was varied, while the total grafting density was kept constant. BSA adsorption onto monomodal PEO(48) and PEO(770) brushes was determined for comparison. The BSA adsorption behavior of the bimodal brushes is similar to the adsorption of BSA at PEO(770) monomodal brushes. The maximum of BSA adsorption at low grafting density of PEO(770) can be explained by ternary adsorption, implying an attraction between BSA and PEO. The contribution of primary adsorption to the total adsorbed amount is negligible.  相似文献   

20.
The physical adsorption of PEO(n)-b-PLL(m) copolymers onto silica nanoparticles and the related properties of poly(ethylene oxide) (PEO)-coated particles were studied as a function of the block copolymer composition. Copolymers adopt an anchor-buoy conformation at the particle surface owing to a preferential affinity of poly(L-lysine) (PLL) blocks with the silica surface over PEO blocks when a large excess of copolymer is used. The interdistance between PEO chains at particle surface is highly dependent on the size of PLL segments; a dense brush of PEO is obtained for short PLL blocks (DP = 10), whereas PEO chains adopt a so-called interacting "mushroom" conformation for large PLL blocks (DP = 270). The size of the PEO blocks does not really influence the copolymer surface density, but it has a strong effect on the PEO layer thickness as expected. Salt and protein stability studies led to similar conclusions about the effectiveness of a PEO layer with a dense brush conformation to prevent colloidal aggregation and protein adsorption. Besides, a minimal PEO length is required to get full stabilization properties; as a matter of fact, both PEO(45)-b-PLL(10) and PEO(113)-b-PLL(10) give rise to a PEO brush conformation but only the latter copolymer efficiently stabilizes the particles in the presence of salt or proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号