首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Photochemical reaction of [CH2(eta5-C5H4)2][Rh(C2H4)2]2 1 with dmso led to the stepwise formation of [CH2(eta5-C5H4)2][Rh(C2H4)2][Rh(C2H4)(dmso)] 2a and [CH2(eta5-C5H4)2][Rh(C2H4)(dmso)]2 2b. Photolysis of 1 with vinyltrimethylsilane ultimately yields three isomeric products of [CH2(eta5-C5H4)2][Rh(CH2=CHSiMe3)2]2, 3a, 3b and 3c which are differentiated by the relative orientations of the vinylsilane. When this reaction is undertaken in d6-benzene, H/D exchange between the solvent and the alpha-proton of the vinylsilane is revealed. In addition evidence for two isomers of the solvent complex [CH2(eta5-C5H4)2][Rh(C2H4)2][Rh(C2H4)(eta2-toluene)] was obtained in these and related experiments when the photolysis was completed at low temperature without substrate, although no evidence for H/D exchange was observed. Photolysis of 1 with Et3SiH yielded the sequential substitution products [CH2(eta5-C5H4)2][Rh(C2H4)2][Rh(C2H4)(SiEt3)H] 4a, [CH2(eta5-C5H4)2][Rh(C2H4)(SiEt3)H]2 4b, [CH2(eta5-C5H4)2][Rh(C2H4)(SiEt3)H][Rh(SiEt3)2(H)2] 4c and [CH2(eta5-C5H4)2][Rh(SiEt3)2(H)2]2 4d; deuteration of the alpha-ring proton sites, and all the silyl protons, of 4d was demonstrated in d6-benzene. This reaction is further complicated by the formation of two Si-C bond activation products, [CH2(eta5-C5H4)2][RhH(mu-SiEt2)]2 5 and [CH2(eta5-C5H4)2][(RhEt)(RhH)(mu-SiEt2)2] 6. Complex 5 was also produced when 1 was photolysed with Et2SiH2. When the photochemical reactions with Et3SiH were repeated at low temperatures, two isomers of the unstable C-H activation products, the vinyl hydrides [CH2(eta5-C5H4)2][{Rh(SiEt3)H}{Rh(SiEt3)}(mu-eta1,eta2-CH=CH2)] 7a and 7b, were obtained. Thermally, 4c was shown to form the ring substituted silyl migration products [(eta5-C5H4)CH2(C5H3SiEt3)][Rh(SiEt3)2(H)2]2 8 while 4b formed [CH2(C5H3SiEt3)2][Rh(SiEt3)2(H)2]2 (9a and 9b) upon reaction with excess silane. The corresponding photochemical reaction with Me3SiH yielded the expected products [CH2(eta5-C5H4)2][Rh(C2H4)2][Rh(C2H4)(SiMe3)H] 10a, [CH2(eta5-C5H4)2][Rh(C2H4)(SiMe3)H]2 10b, [CH2(eta5-C5H4)2][Rh(C2H4)(SiMe3)H][Rh(SiMe3)2(H)2] 10c and [CH2(eta5-C5H4)2][Rh(SiMe3)2(H)2]2 10d. However, three Si-C bond activation products, [CH2(eta5-C5H4)2][(RhMe)(RhH)(mu-SiMe2)2] 11, [CH2(eta5-C5H4)2][(Rh{SiMe3})(RhMe)(mu-SiMe2)2] 12 and [CH2(eta5-C5H4)2][(Rh{SiMe3})(RhH)(mu-SiMe2)2] 13 were also obtained in these reactions.  相似文献   

2.
FT-IR photoacoustic and Raman spectroscopy have been used to study the interactions between the metallocene catalyst, Cp(2)ZrCl(2) (Cp=eta(5)-C(5)H(5)), and two polyhedral oligomeric silsesquioxanes (POSS) supports. The first silsesquioxane support, POSS(h), contains (beta-hydroxyl)-tertiary amine groups, while in the second one, POSS(u), these -OH groups have been converted into N-(p-toluyl) urethane groups. The vibrational spectra of the Cp(2)ZrCl(2):POSS(h) and Cp(2)ZrCl(2):POSS(u) samples show that the Cp(2)ZrCl(2) catalyst reacts with the C-OH groups of POSS(h) and also interacts with N-H and >CO groups of POSS(u). Furthermore, Cp(2)ZrCl(2) can react with the Si-OH groups of the POSS supports and also interact with the O atoms that are bonded to the benzene rings and the N atoms of the tertiary amines in both silsesquioxanes. As a result of the interactions between Cp(2)ZrCl(2) and the POSS supports, acidic species are generated. The Cp(2)ZrCl(2):POSS(h) mass ratio seems to be an important parameter in the formation of Zr-O bonds and the acidic species.  相似文献   

3.
We have successfully synthesised and characterised a number of eta(1)- and eta(3)-triazacyclononane Rh(I) and Rh(III) derivatives. By using different reaction conditions, we have been able to convert one of the eta(1)-triazacyclononane complexes to an eta(3)-derivative. Also, we have observed a rare example of an addition of an organic fragment to a metal bound ligand to form a quaternary carbon centre.  相似文献   

4.
5.
Byun D  Zink JI 《Inorganic chemistry》2003,42(14):4308-4315
Gas-phase photoreactions and photoproducts of the mixed-ligand compound (eta(4)-cycloocta-1,5-diene)(eta(5)-cyclopentadienyl)cobalt are reported. Significant amounts of the monoligated complexes CoCOD and CoCp are produced, and the relative amounts are wavelength dependent. The COD ligand (with the weakest metal-ligand bonds) is always preferentially labilized as expected, but the relative amounts of the CoCOD and CoCp fragments change by 1 order of magnitude as the excitation wavelength is changed. The gas-phase photoreactions exhibit other surprising features that are uncommon in the photoreactions of organometallic compounds in the gas phase. Significant amounts of the intact cation are formed, in contrast to most reported reactions where fragmentation of the weak metal-ligand bonds precedes ionization. Most surprisingly, fragmentation of the ligands occurs while the ligands are still coordinated. The resulting metal complexes contain ligand fragments that remain coordinated to the metal. Breaking several carbon-carbon bonds with retention of weaker metal-ligand bonds is unexpected. For example, C(5)H(5) undergoes fragmentation while still coordinated to the cobalt, yielding smaller compounds such as Co(CH)(+), Co(C(2)H(2))(+), Co(C(3)H(3))(+), and Co(C(4)H(6))(+). Correspondingly, coordinated COD yields Co(C(6)H(6))(+), Co(C(5)H(5))(+), Co(C(4)H(6))(+), Co(C(3)H(3))(+), Co(C(2)H(2))(+), and Co(CH)(+). The wavelength dependence of the ligand labilization is examined by utilizing mass-selected resonance enhanced multiphoton ionization spectroscopy. Both broad bands and sharp lines are observed in the mass-selected excitation spectra. The action spectra obtained in the gas phase while monitoring the cobalt ion follow the absorption onset found in solution. The changes in fragmentation pathways are interpreted in terms of the initially accessed excited state.  相似文献   

6.
Irradiation of benzene solutions 10?3M in both titanocene-d10 dichloride and titanocene dichloride with light of wavelengths 313, 360, 400, and 520 nm leads to the formation of titanocene-d5 dichloride with quantum yields of 0.02, 0.005, 0.01 and 0.007 mol Ei?1, respectively. Photodecomposition of titanocene dichloride is negligible even at much longer photolysis times than those required for isotopic equilibration. Photolysis of benzene solutions 10?2M in titanocene dichloride and 1.0 M in methanol leads to the formation of cyclopentadienyl(methoxo)titanium dichloride with a quantum yield of about 0.08 mol Ei?1 when the irradiating wavelength is 313 nm.  相似文献   

7.
Conclusions It was found that the catalytic activity of the studied complexes is related to the effect of the axial ligand on the strength of the metal-carbon bond in the intermediate alkyl or alkenyl complex.Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 11, pp. 2620–2623, November, 1978.  相似文献   

8.
The photolysis of (η5-C5H5)V(CO)4 in the presence of one or two equivalents of bis(pentafluorophenyl)acetylene yields (η5-C5H5)V(CO)2(C6F5CCC6F5). One carbon monoxide ligand in this acetylene adduct can be photochemically displaced by triphenylphosphine to yield (η5-C5H5)V(CO)[P(C6H5)3](C6F5CCC6F5). This complex is also obtained by the photolysis of (η5-C5H5)V(CO)3P(C6H5)3 in the presence of bis(pentafluorophenyl)acetylene. In vacuo, melt-phase thermolysis of (η5-C5H5)V(CO)2(C6F5CCC6F5) and bis(pentafluorophenyl)acetylene produces (η5-C5H5)V(CO)(C6F5CCC6F5)2. This diacetylenic complex as well as the perfluorinated organic compounds 2,3,5,6-tetrakis(pentafluorophenyl)-1,4-benzoquinone, 2,3,4,5-tetrakis(pentafluorophenyl)cyclopentadienone and 2,3,4,5,6,7-hexakis(pentafluorophenyl)cycloheptatrienone are also obtained from thermal reactions of (η5-C5H5)V(CO)4 and bis(pentafluorophenyl)acetylene in solution. Photolysis of (η5-C5H5)V(CO)(C6F5CCC6F5)2 in the presence of carbon monoxide produces (η5-C5H5)V(CO)2(C6F5CCC6F5). The photochemical and thermal reactions of bis(pentafluorophenyl)acetylene and (η5-C5H5)V(CO)4 are compared and contrasted with similar reactions of diphenylacetylene and (η5-C5H5)V(CO)4.  相似文献   

9.
Protonation of the classical trihydride [(triphos)RhH3] (2) at 210 K in either THF or CH2Cl2 by either HBF4.OMe2 or CF3SO2OH gives the nonclassical eta 2-H2 complex [(triphos)Rh(eta 2-H2)H2]+ (1) [triphos = MeC(CH2PPh2)3]. Complex 1 is thermally unstable and highly fluxional in solution. In THF above 230 K, 1 transforms into the solvento dihydride complex [(triphos)Rh(eta 1-THF-d8)H2]+ (5) that, at room temperature, quickly converts to the stable dimer trans-[[(triphos)RhH]2(mu-H)2]2+ (trans-6). In CH2Cl2, 1 is stable up to 240 K. Above this temperature, the eta 2-H2 complex begins to convert into a mixture of trans- and cis-6, which, in turn, transform into the bridging-chloride dimers trans- and cis-[[(triphos)RhH]2(mu-Cl)2]2+ at room temperature. Complex 1 contains a fast-spinning H2 ligand with a T1min of 38.9 ms in CD2Cl2 (220 K, 400 MHz). An NMR analysis of the bis-deuterated isotopomer [(triphos)RhH2D2]+ (1-d2) did not provide a J(HD) value. At 190 K, the perdeuterated isotopomers [(triphos)RhD3] (2-d3) and 1-d4 show T1min values of 16.5 and 32.6 ms (76.753 MHz), respectively, for the rapidly exchanging deuterides. An analogous 2-fold elongation of T1min is also observed on going from [(triphos)IrD3] to [(triphos)Ir(eta 2-D2)D2]+. A rationale for the elongation of T1min in nonclassical polyhydrides is proposed on the basis of both the results obtained and recent literature reports.  相似文献   

10.
11.
The measured Raman and IR spectra of solid, polycrystalline bis(pentamethylcyclopentadienyl)dizinc, (eta(5)-C5Me5)2Zn2, 1, and bis(pentamethylcyclopentadienyl)monozinc, (eta(5)-C5Me5)(eta(1)-C5Me5)Zn, 8, are reported in some detail. The IR spectra of the vapors of 1 and 8 each trapped in a solid Ar matrix at 12 K confirm the essentially molecular character of the solids. The experimental results have been interpreted with particular reference (i) to the corresponding spectra of (68)Zn-enriched samples of the compounds, and (ii) to the spectra simulated by density functional theory (DFT) calculations at the B3LYP level. The marked differences of structure of 1 and 8 contrast with the relatively close similarity of their vibrational spectra, disparities being revealed only on detailed scrutiny, including the effects of (68)Zn enrichment, and primarily at wavenumbers below 1000 cm(-1). The Zn-Zn stretching motion of 1 features not as a single, well-defined mode identifiable with intense Raman scattering but in several normal modes which respond in varying degrees to (68)Zn substitution. A stretching force constant of 1.42 mdyne A(-1) has been estimated for the Zn-Zn bond of 1.  相似文献   

12.
(eta(5)-Cyclopentadienyl)dicarbonyliron carbene complexes, [(eta(5)-C(5)H(5))(CO)(2)Fe=CHR](+)BF(4)(-), are generated as reactive intermediates from thioether derivatives, (eta(5)-C(5)H(5))(CO)(2)FeCH(R)SPh, by S-alkylation with trimethyloxonium tetrafluoroborate and loss of thioanisole. The carbene complexes undergo intramolecular C-H insertion into appropriately situated side chains to form cyclopentane derivatives. The reaction has been developed into a general procedure employing cycloalkanones as scaffolds bearing the iron carbene moieties and the side chains at C(2) and C(3), respectively. The products of the intramolecular insertion reactions are substituted bicyclo[n.3.0]alkanones. The scope and limitations of the reaction are described. The reaction is applied to a total synthesis of sterpurene and to a formal synthesis of pentalenene. Overall, this approach to cyclopentane annulation complements the related metal-catalyzed insertion reactions of diazocarbonyl compounds, which are also believed to occur via metal carbene complexes.  相似文献   

13.
The reaction of [CpZrCl3(thf)2] with methyl 4,6-O-benzylidene-beta-D-glucopyranoside (beta-MeBGH2, 1) in the presence of Et3N results in the formation of the zirconate complex [Et3NH] [(CpZrCl)2(mu-Cl) (mu-(beta-MeBG)]2] (2). X-ray structure analyses were performed from the ligand precursor beta-MeBGH2 1 as well as from 2. Compound 1 crystallizes in the monoclinic chiral space group P2(1). The molecules show a flat arrangement including the benzylidene protecting group, and are packed in columns. The columns are held together in pairs by the formation of hydrogen bonds between the hydroxy functions in positions 2 and 3. Compound 2 crystallizes in the orthorhombic space group P2(1)2(1)2(1). The beta-MeBG ligands are chelating the Zr atoms through the oxygen atoms in positions 2 and 3 of the glucopyranosidato ligand revealing a 1-zircona-2,5-dioxolane moiety each; the oxygen atom in position 3 is linked to both of the Zr atoms. Additionally one chloro ligand is bridging the two Zr centers. Two terminally bound chloro ligands stick out from the two Zr atoms into a chiral U-shaped cavity constructed by the two beta-MeBG ligands. The cavity incorporates the tertiary ammonium cation [Et3NH]+ which is bound to one of the terminal chloro ligands through a hydrogen bond. The inclusion of the [Et3NH]+ cation in the U-shaped cavity, even in solution, is demonstrated by NMR spectroscopic data.  相似文献   

14.
Electrochemical reduction of the dinuclear [(eta 5-C5Me5)ClM(mu-L)MCl(eta 5-C5Me5)]2+ ions (M = Rh, Ir; L = 2,5-bis(1-phenyliminoethyl)pyrazine (bpip) and 2,5-bis[1-(2,6-dimethylphenyl)iminoethyl]pyrazine (bxip)) proceeds via the paramagnetic intermediates [(eta 5-C5Me5)ClM(mu-L)MCl(eta 5-C5Me5)]+ (L = bpip) or [(eta 5-C5Me5)M(mu-L)MCl(eta 5-C5Me5)]2+ (L = bxip) and [(eta 5-C5Me5)M(mu-L)M(eta 5-C5Me5)]+. Whereas the first is clearly a radical species with a small g anisotropy, the chloride-free cations are distinguished by structured intervalence charge transfer (IVCT) bands in the near-infrared region and by rhombic electron paramagnetic resonance features between g = 1.9 and g = 2.3, which suggests considerable metal participation at the singly occupied MO. Alternatives for the d configuration assignment and for the role of the bisbidentate-conjugated bridging ligands will be discussed. The main difference between bpip and bxip systems is the destabilization of the chloride-containing forms through the bxip ligand for reasons of steric interference.  相似文献   

15.
16.
17.
Olabe JA  Estiú GL 《Inorganic chemistry》2003,42(16):4873-4880
The addition of nitrogen hydrides (hydrazine, hydroxylamine, ammonia, azide) to the pentacyanonitrosylferrate(II) ion has been analyzed by means of density functional calculations, focusing on the identification of stable intermediates along the reaction paths. Initial reversible adduct formation and further decomposition lead to the eta(1)- and eta(2)-linkage isomers of N(2)O and N(2), depending on the nucleophile. The intermediates (adducts and gas-releasing precursors) have been characterized at the B3LYP/6-31G level of theory through the calculation of their structural and spectroscopic properties, modeling the solvent by means of a continuous approach. The eta(2)-N(2)O isomer is formed at an initial stage of adduct decompositions with the hydrazine and azide adducts. Further conversion to the eta(1)-N(2)O isomer is followed by Fe-N(2)O dissociation. Only the eta(1)-N(2)O isomer is predicted for the reaction with hydroxylamine, revealing a kinetically controlled N(2)O formation. eta(1)-N(2) and eta(2)-N(2) isomers are also predicted as stable species.  相似文献   

18.
19.
20.
Very dark blue prismatic crystals of [Fe(eta(5)-C(5)Ph(5))[(eta(5/6)-C(6)H(5))(C(5)Ph(4))]], the linkage isomer of decaphenylferrocene, were grown from (3:1 v/v) hexane/ethyl acetate and characterized by single-crystal X-ray diffraction (space group P2(1)/n, R1(F) 0.0404). The iron atom is coordinated to two C(5)Ph(5) ligands: one with an eta(5)-C(5)-configuration and the other with a coordinated arene configuration. The phenyl groups of the (eta(5)-C(5)Ph(5)) ligand are oriented in a "paddle-wheel" arrangement about the C(5) ring, with which four of them make an average angle of approximately 53 degrees, the other, an angle of approximately 42 degrees. The coordinated C(6)H(5) ring of the other ligand is inclined at only approximately 5 degrees to the uncoordinated C(5) ring, with which three of the other four phenyl rings make an average angle of approximately 64 degrees, and the other (opposite the coordinated arene ring), an angle of 38 degrees.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号