首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Binary and ternary complexes of copper(II) involving promethazine, N,N-dimethyl-3-(phenothiazin-10-yl)propylamine (Prom) and various biologically relevant ligands containing different functional groups, were investigated. The ligands (L) are dicarboxylic acids, amino acids, amides and DNA constituents. The ternary complexes of amino acids, dicarboxylic acids or amides are formed by simultaneous reactions. The results showed the formation of Cu(Prom)(L) complexes with amino acids and dicarboxylic acids. The effect of chelate ring size of the dicarboxylic acid complexes on their stability constants was examined. Amides form both Cu(Prom)(L) complexes and the corresponding deprotonated species Cu(Prom)(LH−1). The ternary complexes of copper(II) with (Prom) and DNA are formed in a stepwise process, whereby binding of copper(II) to (Prom) is followed by ligation of the DNA components. DNA constituents form both 1:1 and 1:2 complexes with Cu(Prom)2+. The stability of these ternary complexes was quantitatively compared with their corresponding binary complexes in terms of the parameters Δlog10 K. The values of Δlog10 K indicate that the ternary complexes containing aromatic amino acids were significantly more stable than the complexes containing alkyl- and hydroxyalkyl-substituted amino acids. The concentration distribution of various complex species formed in solution was also evaluated as a function of pH. The solid complexes [Cu(Prom)L)] where L=1,1-cyclobutanedicarboxylic acid (CBDCA), oxalic and malonic acid were isolated and characterized by elemental analysis, infrared, TGA, and magnetic susceptibility measurements. Spectroscopic studies of the complexes revealed that the complexes exhibits square planar coordination with copper(II). The isolated solid complexes have been screened for their antimicrobial activities using the disc diffusion method against some selected bacteria and fungi. The activity data show that the metal complexes are found to have antibacterial and antifungal activity.  相似文献   

2.
cis-Dichloro(2-(aminomethyl)benzimidazole)palladium(II), [Pd(AMBI)Cl2], was synthesized and characterized. The stoichiometry and stability constants of the complexes formed between [Pd(AMBI)(H2O)2]2+ with various biologically relevant ligands containing different functional groups are investigated. The ligands used are dicarboxylic acids, amino acids, peptides and DNA constitutents. The results show the formation of 1:1 complexes with amino acids and dicarboxylic acids. The effect of the chelate ring size of the dicarboxylic acid complexes on their stability constants is examined. Peptides form both 1:1 complexes and the corresponding deprotonated amide species. Structural effects of the peptide on the amide deprotonation are investigated. DNA pyrimidinic constituents such as uracil, uridine, thymidine and thymine form 1:1 and 1:2 complexes, whereas purinic constituents such as inosine 5′-monophosphate (5′-IMP) and guanosine 5′-monophosphate (5′-GMP) form only 1:1 complexes. The concentration distribution of the complexes in solution was evaluated. The effect of increasing chloride ion concentration on the formation constant of CBDCA with Pd(AMBI)2+ was reported.  相似文献   

3.
Binary and ternary complexes of zinc(II) involving nitrilo-tris(methyl phosphonic acid (H6A) and amino acids, peptides (HL), or DNA constituents have been investigated. The stoichiometry and stability constants for the complexes formed are reported. The results show that ternary complexes are formed in a stepwise manner whereby nitrilo-tris(methylphosphonic acid) binds to zinc(II), which is then followed by coordination of an amino acid, peptide or DNA. Zinc(II) was found to form ZnA and ZnAH n complex species where n=3, 2 or 1. The stabilities of the ternary complexes are compared with the stabilities of their corresponding binary complexes. The concentration distributions of the various complex species have been evaluated. The kinetics of the base hydrolysis of glycine methyl ester in the presence of Zn(II)-NTP complexes was studied in aqueous solution using a pH-stat technique. The pK a for ionization of the coordinated water molecule is 9.14 as determined from the kinetic results, while direct potentiometric titration of the complex [Zn(NTP)(H2O)] gave 9.98 (±0.02). The rate constant for the intramolecular attack of coordinated hydroxide on the ester is k=(2.65×10−4±0.003) dm3⋅mol−1⋅s−1.  相似文献   

4.
Binary and ternary complexes of copper(II) involving N,N,N′,N′-tetramethylethylene-diamine (Me4en) and various biologically relevant ligands containing different functional groups are investigated. The ligands (L) used are dicarboxylic acids, amino acids, peptides and DNA unit constituents. The ternary complexes of amino acids, dicarboxylic acids or peptides are formed by simultaneous reactions. The results showed the formation of Cu(Me4en)(L) complexes with amino acids and dicarboxylic acids. The effect of chelate ring size of the dicarboxylic acid complexes on their stability constants was examined. Peptides form both Cu(Me4en)(L) complexes and the corresponding deprotonated amide species Cu(Me4en)(LH−1). The ternary complexes of copper(II) with (Me4en) and DNA are formed in a stepwise process, whereby binding of copper(II) to (Me4en) is followed by ligation of the DNA components. DNA constituents form both 1:1 and 1:2 complexes with Cu(Me4en)2+. The concentration distribution of the complexes in solution was evaluated. [Cu(Me4en)(CBDCA)] and [Cu(Me4en)(malonate)] are isolated and characterized by elemental analysis and infrared measurements.  相似文献   

5.
Binary and ternary complexes of copper(II) involving picolylamine (Pic) and amino acids, peptides (HL) or DNA constituents have been investigated. Ternary complexes of amino acids or peptides are formed by simultaneous reactions. Amino acids form the Cu(Pic)L complex, whereas peptides form Cu(Pic)L and Cu(Pic)(LH–1). The ternary complexes of copper(II) with picolylamine and DNA are formed in a stepwise process, whereby binding of copper(II) to picolylamine is followed by ligation of the DNA components. The stability of the ternary complexes is compared with the stabilities of the corresponding binary complexes. The hydrolysis of glycine methyl ester (MeGly) is catalysed by the Cu(pic)2+ complex. The kinetic data is fitted assuming that the hydrolysis proceeds in two steps. The first step, involving coordination of the amino acid ester by the amino and carbonyl groups, is followed by rate-determining attack by the OH ion. The second step involves equilibrium formation of the hydroxo-complex, Cu(pic)(MeGly)(OH), followed by intramolecular attack.  相似文献   

6.
The formation equilibria of the binary complex of cadmium(II) with triethylenetetramine (Trien) and of ternary complexes Cd(Trien)L, where L refers to amino acids, DNA constituents and related compounds have been investigated. Cd(II) was found to form a highly stable complex with Trien. The acid-base equilibria of Cd(Trien)2+ were characterized. Ternary complexes of amino acids and DNA constituents are formed through stepwise mechanism, whereby Trien binds to Cd(II), followed by interaction with ligand (L), whereas thiol-containing ligands form ternary complexes through a simultaneous mechanism. The formation constants of the complexes were determined at 25 °C and , = 0.1M NaNO3. The participation of different ligand functional groups in the complex-formation was examined.  相似文献   

7.
The acid-base equilibria of triethylenetetramine. (Trien) and the formation equilibria of binary and ternary complexes of Zn(II) with Trien as primary ligand and some selected arnino acids and DNA units as secondary ligands have been investigated. The results showed the formation of a 11 Zn (Trien)2+ complex. At higher pH, the Zn (Trien)2+ complex is hydrolysed to give Zn (Trien) (OH)+ and Zn(Trien)(OH)2 complexes. The fraction of the monohydroxo species attains a maximum of 81.3% at pH 10. The stability constantsK Zn(Trien)A Zn(Trien) for the ternary complexes were determined. Histidine coordinates in a histamine-like way. Lysine and ornithine ligate by the two amino groups. Serine and methionine are bound in a glycine-like mode. However, penicillamine, cysteine and glutathione ligate partly like mercaptoethylamine and partly like mercaptopropionic acid. In the case of DNA complexes, inosine is bound through the n1 atom. However, uracil, undine, thymine and thymidine ligate through the N3 atom. The relative stabilities of ternary complexes are compared with those of the corresponding binary complexes in terms of logK values. The concentration distribution diagrams of the complexes are evaluated.  相似文献   

8.
Binary and ternary complexes of Cu(II) involving imino-bis(methyl phosphonic acid) (IdP) abbreviated as H4A and some selected bio-ligands, amino acids, peptides and DNA constituents (L), were examined. Cu(II) forms CuA and CuAH complexes with IdP. Ternary complexes are formed in a stepwise mechanism whereby iminodiphosphonic acid binds to Cu(II), followed by coordination of amino acid, peptide or DNA. The concentration distribution of the various complex species has been evaluated. The kinetics of base hydrolysis of glycine methyl ester in the presence of Cu(II)-IdP was studied in aqueous solution at different temperatures, and in dioxane-water solutions of different compositions at 25°C. The activation parameters are evaluated and discussed.  相似文献   

9.
As a powerful macrocyclic host molecule with unique conformation and cavity structure that are fine-tuned by the bridging nitrogen atoms, methylazacalix[4]pyridine (MACP-4) has been shown to selectively recognize Zn2+ and form stable Zn(Ⅱ)-MACP-4 complexes both in solid state and solution with an association constant up to 5.97 (logKs). The molecular recognition of Zn(Ⅱ)-MACP-4 complexes towards various amino acids and anions with different geometry was investigated by using the spectral titration methods a...  相似文献   

10.
Formation equilibria of cobalt(II) complexes of 2-(aminomethyl)-benzimidazole (AMBI) and the ternary complexes Co(AMBI)L (L = aliphatic or aromatic dicarboxylic acids) were investigated in aqueous solutions at 25?°C and 0.1 mol?dm?3 ionic strength. Stoichiometry and stability constants are reported for the complexes formed. The speciation of the complexes was resolved. Values of $\log_{10}\ (K_{\mathrm{Co(AMBI)L}}^{\mathrm{Co(AMBI)}})$ and Δlog?10 K are calculated and discussed. The effect of chelate ring size of the dicarboxylic acid complexes on their stability constants was examined. The effect of temperature on the dissociation constant of AMBI, CBDCA, and the formation constant of Co(AMBI) and Co(AMBI)-CBDCA complexes was studied and the thermodynamic parameters were calculated. Formation of the metal complexes has been found to be spontaneous, exothermic and entropically favorable. The solid complexes of [Co(AMBI)L] (L = oxalic acid, 1,1-cyclobutanedicarboxylic acid (CBDCAH2) and malonic acid) have been synthesized and characterized by elemental analysis, infrared, spectra, magnetic and conductance measurements. Electronic spectra and μ eff values suggest a tetrahedral geometry for Co(II)-complexes. The isolated metal chelates have been screened for their antibacterial activities and the complexes show a significant antibacterial activity against Pseudomonas fluorescence (Gram ?ve) and Bacillus subtilis (Gram +ve). The activity increases at higher concentration of the compounds.  相似文献   

11.
The stoichiometry and stability constants of complexes formed between [Pd(AMBI)(H2O)2]2+ (AMBI?=?2-(aminomethyl)-benzimidazole) with some selected bio-relevant ligands containing different functional groups were investigated at 25°C and 0.1?mol?L?1 ionic strength. The ligands used are imidazole, cysteine, glutathione (GSH), threonine, aspartic acid, 1,1-cyclobutane dicarboxylic acid (CBDCA) and lysine. The stoichiometry and stability constants of the formed complexes were reported and the concentration distribution of the various complex species was evaluated as a function of pH. The results show ring opening of CBDCA and monodentate complexation of the DNA constituent with the formation of [Pd(AMBI)(CBDCA–O)DNA], where (CBDCA–O) represents cyclobutane dicarboxylate coordinated by one carboxylate oxygen. The equilibrium constant of the displacement reaction of coordinated inosine, as a typical DNA constituent, by glutathione, as a typical thiol ligand, was investigated. The effect of dioxane on the formation constant of CBDCA with Pd(AMBI)2+ is reported. Five new palladium(II) complexes of the formula [Pd(AMBI)(AA)] n + (where AMBI?=?2-aminomethyl benzimidazole, AA is an anion of glycine, alanine, cysteine, methionine, and serine) have been synthesized. These palladium(II) complexes have been ascertained by elemental, molar conductance, infrared and 1H-NMR spectroscopy. The isolated Pd(II) complexes were screened for their antibacterial and cytotoxic activities and the results are discussed.  相似文献   

12.
In this study the binary and ternary complexes of copper(II) with substituted 1,10-phenanthrolines [s-phen: 1,10-phenanthroline (phen), 4,7-dimethyl-1,10-phenanthroline (dmphen) and 5-nitro-1,10-phenanthroline (nphen)] and l-amino acids [aa: l-phenylalanine (phe), l-tyrosine (tyr) and l-tryptophan (trp)] have been investigated using potentiometric methods in 0.1 mol·L?1 KCl aqueous ionic media at 298.2 K. The protonation constants of the ligands and the stability constants of the binary and ternary complexes of Cu(II) with the ligands were calculated from the potentiometric data using the “BEST” software package. It was inferred that the aromatic 1,10-phenanthrolines act as a primary ligand in the ternary complexes, while the oxygen and nitrogen donor-containing amino acids are secondary ligands. The observed values of Δlog10 K indicate that the ternary complexes are more stable than the binary ones, suggesting no interaction takes place between the ligands in the ternary complexes. The magnitudes of the measured stability constants of all of the ternary complexes are in the order [Cu(s-phen)(trp)]+ > [Cu(s-phen)(tyr)]+ > [Cu(s-phen)(phe)]+, which is identical to the sequence found for the binary complexes of Cu(II) with the amino acids. When the substituted 1,10-phenanthroline is changed, the stability constants of the ternary complexes decrease in the following order: [Cu(dmphen)(aa)]+ > [Cu(phen)(aa)]+ > [Cu(nphen)(aa)]+.  相似文献   

13.
Equilibrium studies have been carried out on complex formation of M(II) (M = Co(II), Cu(II) and Zn(II)) with tricine (Tn) and L = amino acids in aqueous solution, at 25 °C and ionic strength of I = 0.1 M (NaNO3). The ternary complexes of amino acids are formed by simultaneous reactions. The concentration distribution of the complexes is evaluated. The solid complexes of [M(II)–Tn–Histidine (Hist)] have been synthesized and characterized by elemental analysis, infrared, magnetic and conductance measurements. The synthesized complexes have been screened for their antibacterial activities and the complexes show a significant antibacterial activity against four bacterial species: Staphylococcus aureus (Gram +ve), Streptococcus pyogenesr (Gram +ve), Serratia marcescens (Gram −ve) and Escherichia coli (Gram −ve). The activity increases by increasing the concentration of the complexes.  相似文献   

14.
Binary and ternary copper(II) complexes involving 2,2′-dipyridylamine (DPA) and various biologically relevant ligands containing different functional groups are investigated. The ligands used are dicarboxylic acids, amino acids, peptides and DNA unit constituents. The ternary complexes of amino acids, dicarboxylic acids or peptides are formed by simultaneous reactions. The results showed the formation of 1:1 complexes with amino acids and dicarboxylic acids. The effect of chelate ring size of the dicarboxylic acid complexes on their stability constants was examined. Peptides form both 1:1 complexes and the corresponding deprotonated amide species. The ternary complexes of copper(II) with DPA and DNA are formed in a stepwise process, whereby binding of copper(II) to DPA is followed by ligation of the DNA components. DNA constituents form both 1:1 and 1:2 complexes with Cu(DPA)2+. The concentration distribution of the complexes in solution was evaluated. [Cu(DPA)(CBDCA)], [Cu(DPA)(malonate)] and [Cu(DPA)(oxalate)] were isolated and characterized by elemental analysis, i.r. and magnetic measurements. Spectroscopic studies of [Cu(DPA)(malonate)] revealed that the complex exhibits square planner coordination with copper(II). The hydrolysis of glycine methyl ester (MeGly) is catalyzed by the Cu(DPA)2+ complex. The reaction has been studied by a pH-state technique over the pH range 5.8–6.8 at 25 °C and I=0.1 mol dm−1. The kinetic data fits assuming that the hydrolysis proceeds in two steps. The first step, involving coordination of the amino acid ester by the amino and carboxylic group, is followed by the rate-determining attack by the OH ion. The second step involves equilibrium formation of the hydroxo-complex, Cu(DPA)(MeGly)(OH), followed by intramolecular attack.  相似文献   

15.
A potentiometric titration technique has been used to determine the stability constants for the various complexes of Ni(II) with adenine (A) as primary ligand and selected amino acids (L) as secondary ligands. Ternary complexes of amino acids are formed in a stepwise mechanism, whereby (A) binds to Ni(II), followed by interaction with ligand (L), whereas thiol-containing ligands form ternary complexes through a simultaneous mechanism. The formation constants of the complexes were determined at 25 °C and ionic strength 0.1 M NaNO3. The relative stabilities of the ternary complexes are compared with those of the corresponding binary complexes in terms of Δlog K values. The concentration distribution of the complexes are evaluated.  相似文献   

16.
The method of cyclic voltammetry (CV) was used to compare electrochemical and electrocatalytic properties of meso-triphenylcorrole [H3(ms-Ph)3Cor] and also its complexes with Mn(III), Co(III), Cu(III), and Zn(II) in 0.1M KOH. Metal-localized redox transitions are detected in the complexes of Mn (III ?? IV) and (III ?? II), Co (III ?? II), Cu (III ?? II). It is shown that the manganese complex features most effective catalytic properties in the reaction of molecular oxygen electroreduction.  相似文献   

17.
In the present study, the acid-base equilibria of N,O-carboxymethy chitosan abbreviated as (NOCC), is investigated. The complex formation equilibria with the metal ions Cu(II), Ni(II), Co(II), Mn(II), and Zn(II) are investigated potentiometrically. The stability constant values of the binary and ternary complexes formed in solution were determined and the binding centers of the ligands were assigned. The relationships between the properties of the studied central metal ions as ionic radius, electronegativity, atomic number, and ionization potential, and the stability constants of the formed complexes were investigated in an effort to give information about the nature of chemical bonding in complexes and make possible the calculation of unknown stability constants. Cu(II), Ni(II), and U(VI) complexes with NOCC are isolated as solid complexes and characterized by conventional chemical and physical methods. The structures of the isolated solid complexes are proposed on the basis of the spectral and magnetic studies. The ternary copper(II) complexes involving NOCC and various biologically relevant ligands containing different functional groups, as amino acids and DNA constituents are investigated. The stability constants of the complexes are determined and the concentration distribution diagrams of the complexes are evaluated.  相似文献   

18.
《Polyhedron》1988,7(9):689-694
Protonation constants of picolinic acid and stability constants of Cu(II) and Zn(II) picolinate complexes were determined potentiometrically in 50% (v/v) dioxane-water solution at 25°C and 0.2 M KNO3. The values obtained for the constants were: protonation constants for picolinate ion: logβ1 = 5.36±0.01 and logβ2 = 6.80±0.04; stability constants for copper(II) complexes: logβ1.1 = 7.766±0.001 and logβ1.2 = 16.826±0.007; stability constants for the Zn(II) complexes: logβ1.1 = 6.10±0.05, logβ1.2 = 11.47±0.03 and logβ1.3 = 15.77±0.08. No protonated nor hydroxo-complex was detected in the metal ion-picolinate systems.  相似文献   

19.
Mononuclear copper(II), cobalt(II) and nickel(II) complexes of cetirizine (CTZ = 2-[2-[4-[(4-chlorophenyl)phenyl methyl]-piperazine-1-yl]-ethoxy]acetic acid) in the presence of 2-aminomethyl-benzimidazole·2HCl (AMBI), as a representative example of heterocyclic bases, were synthesized and studied by different physical techniques. All mixed-ligand complexes have been fully characterized with the help of elemental analyses, molecular weight determinations, molar conductance, magnetic moments and spectroscopic data. The formulae of the isolated complexes are [M(AMBI)(CTZ)(NO3)(H2O)2nH2O where AMBI is the neutral bidentate 2-aminomethylbenzimidazole, CTZ the deprotonated cetirizine and n = 1 for Co(II) or 0 for Cu(II) and Ni(II) complexes. The measured molar conductance values in DMSO indicate that the complexes are non-electrolytes. The formation equilibria of the ternary complexes have been investigated. Ternary complexes are formed by a simultaneous mechanism. Stoichiometry and stability constants for the complexes formed are reported. The concentration distribution of the complexes in solution was evaluated as a function of pH. The thermodynamic parameters were calculated from the temperature dependence of the equilibrium constants and are discussed. The synthesized metal chelates have been screened for their antimicrobial activities against the selected types of Gram-positive (G+) and Gram-negative (G?) bacteria. They were found to be more active against Gram positive than Gram negative bacteria. The antimicrobial activity in terms of metal ions obeys this order: Cu(II) > Ni(II) > Co(II).  相似文献   

20.
A comprehensive review of organotin(IV) n+ hydrolysis and complex formation equilibria with amino acids, peptides and DNA constituents is presented with special reference to solution and coordination chemistry studies. The review focuses on results obtained in the author??s laboratory and related work of other groups. Also, published studies on these complexes were reviewed with emphasis on their biological aspects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号