首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
The interaction between apigenin (Ap) and bovine serum albumin (BSA) in physiological buffer (pH = 7.4) is investigated by fluorescence quenching technique and UV-vis absorption spectra. The results reveal that Ap could strongly quench the intrinsic fluorescence of BSA. The quenching mechanism of Ap for BSA varies with the change of Ap concentration. when Ap concentration is lower, it is a static quenching procedure, when Ap concentration is higher, a combined quenching (both static and dynamic) would operate. The apparent binding constants Ka and number of binding sites n of Ap with BSA are obtained by fluorescence quenching method. The thermodynamic parameters, enthalpy change (Δr H m and entropy change (Δr S m ), are calculated to be −15.382 kJ mol−1 K−1 < 0 and 104.888 J mol−1 K−1 > 0, respectively, which indicate that the interaction of Ap with BSA is driven mainly by hydrogen bonding and hydrophobic interactions. The distance r between BSA and Ap is calculated to be 1.89 nm based on F?rster’s non-radiative energy transfer theory. The results of synchronous fluorescence spectra show that binding of Ap with BSA cannot induce conformational changes in BSA.  相似文献   

2.
The mechanism of the interaction between bovine serum albumin (BSA) and [Pt(phen) (histidine)]+ complex was studied employing ultraviolet (UV) absorption, circular dichroism (CD), FT-IR, differential pulse voltammetry (DPV), and fluorescence spectral methods. Fluorescence data showed that the intrinsic fluorescence of BSA was strongly quenched by Pt(II) complex in terms of an untypical static quenching process. The corresponding number of binding sites (n) and binding constant (K b) of BSA and complex at 283, 298, and 310 K were calculated to be 0.61?×?106, 19?×?106, and 42?×?106 M?1, respectively. The results showed that the increasing temperature improves the stability of the complex–BSA system, which results in a higher binding constant and the number of binding sites of the complex–BSA system. The positive ΔH and positive ΔS indicated that hydrophobic forces might play a major role in the binding between complex and BSA. Based on Forster’s theory of non-radiation energy transfer, the binding distance (r) between the donor (BSA) and acceptor (Pt(II) complex) was evaluated. The results of CD, UV–vis, DPV, and FT-IR spectroscopy showed that the binding of Pt(II) complex to BSA induced conformational changes in BSA  相似文献   

3.
[C20H32Cu2I3N4] n was synthesized and characterized by elemental analysis, ESI-MS spectrometry, and IR spectra. The crystal structure was determined by X-ray single-crystal diffraction. The binding of the complex with bovine serum albumin (BSA) was studied by fluorescence spectroscopy under simulated physiological conditions. The binding constant (K b), the number of binding sites (n), and the corresponding thermodynamic parameters ΔH, ΔS, ΔG were calculated based on the van’t Hoff equation. The complex had strong ability to quench the fluorescence from BSA, and the quenching mechanism of this complex to BSA was static quenching. Hydrogen bonds and van der Waals forces are the interactions between the Cu(I/II) complex and BSA. According to the Förster non-radiation energy transfer theory, the binding average distance between the donor (BSA) and the acceptor (Cu(I/II) complex) was obtained. The effect of the complex on the BSA conformation was also studied by using synchronous fluorescence spectroscopy.  相似文献   

4.
At different temperatures, the interactions between imidacloprid (IMI) and bovine serum albumin (BSA) were investigated with a fluorescence quenching spectrum, a synchronous fluorescence spectrum, a three-dimensional fluorescence spectrum and an ultraviolet-visible spectrum. The average values of bonding constants (KLB: 3.424 × 10^4 L,mol^-1), thermodynamic parameters (△H: 5.188 kJ,mol^-1, △G^(○—):-26.36 kJ,mol^-1, △S: 103.9 J,K^-1,mol^-1) and the numbers of bonding sites (n: 1.156) could be obtained through Stern-Volmer, Lineweaver-Burk and ther- modynamic equations. It was shown that the fluorescence of BSA could be quenched for its reactions with IMI to form a certain kind of new compound. The quenching belonged to a static fluorescence quenching, with a non-radiation energy transfer happening within a single molecule. The thermodynamic parameters agree with △H〉 0, △S〉0 and△G^(○-)〈0, suggesting that the binding power between IMI and BSA should be mainly a hydrophobic interaction.  相似文献   

5.
We explored the interactions of gas molecules such as H2, CH4, C2H4, C2H6, CO2, and CS2 sandwiched by two pyrazine (Pz) molecules, which were employed as a model of organic linker in the Hofmann-type metal?Corganic framework (MOF). The MP2.5/aug-cc-pVTZ method was employed here, because this method presents almost the same binding energy as that calculated by the CCSD(T)/aug-cc-pVDZ with MP2.5-evaluated basis set extension effects to aug-cc-pVTZ basis set. The binding energy of the gas molecule increases in the order H2?<?CH4?<?CO2?<?C2H4????C2H6?<?CS2. The energy decomposition analysis of the interaction energy indicates that the electrostatic term presents the largest contribution to the interaction energy at the Hartree?CFock level. However, the dispersion interaction provides dominant contribution to the total binding energy at correlated level. We newly found a linear correlation between the z-component of polarizability of gas molecules and dispersion energy, where the z-axis was taken to be perpendicular to two Pz rings. These results are useful for understanding and predicting the binding energy of the gas molecule with the organic linkers of MOF.  相似文献   

6.
The interaction between daidzein and 3′-daidzein sulfonic sodium with bovine serum albumin (BSA) in physiological buffer (pH = 7.4) is investigated by fluorescence quenching technique and UV/vis absorption spectra. The results reveal that both daidzein and 3′-daidzein sulfonic sodium could strongly quench the intrinsic fluorescence of BSA. The quenching mechanism of both the daidzein and 3′-daidzein sulfonic sodium for BSA is static quenching procedure. The apparent binding constants K a and number of binding sites n of daidzein and 3′-daidzein sulfonic sodium with BSA are obtained by fluorescence quenching method. The thermodynamic parameters, enthalpy change (Δr H m ), and entropy change (Δr S m ), are calculated, respectively, which indicate that the interaction of daidzein with BSA is driven mainly by hydrogen bonding and van der Waals, and 3′-daidzein sulfonic sodium with BSA is driven mainly by hydrophobic forces. The distance r between BSA with daidzein and 3′-daidzein sulfonic sodium are calculated to be 4.02 nm and 3.08 nm, respectively, based on F?rster’s non-radiative energy transfer theory. The results of synchronous fluorescence spectra show that binding of daidzein and 3′-daidzein sulfonic sodium with BSA cannot induce conformational changes in BSA.  相似文献   

7.
The interaction between 2,4-dichlorophenol (DCP) and bovine serum albumin (BSA) was investigated by fluorescence spectroscopy combined with UV-vis absorption and circular dichroism (CD) spectroscopy under simulative physiological conditions. The experiment results show that the fluorescence intensity of BSA is dramatically decreased owing to the formation of a DCP–BSA complex. The corresponding effective quenching constants (K a) between DCP and BSA at four different temperatures (292, 298, 304 and 310 K) were determined to be 10.08×104, 9.082×104, 8.177×104, and 7.260×104 L?mol?1, respectively. The thermodynamics parameters enthalpy change (ΔH) and entropy change (ΔS) were calculated to be ?13.64 kJ?mol?1 and 49.08 J?mol?1?K?1, which suggested that hydrophobic interaction was the predominant intermolecular force. Site marker competitive experiments indicated that the binding of DCP to BSA primarily takes place in subdomain IIA. The binding distance (r) between DCP and the tryptophan residue of BSA ias 4.09 nm according to Förster’s theory of non-radioactive energy transfer. The conformational investigation demonstrated that the presence of DCP decreased the α-helical content of BSA and induced a slight unfolding of the polypeptides of protein, which confirmed the occurrence some micro environmental and conformational changes of BSA molecules.  相似文献   

8.
A new cobalt(II) complex [Co(DCA)(bipy)(H2O)] (DCA?=?demethylcantharate, 7-oxabicyclo[2.2.1]heptane-2,3-dicarboxylate, C8H8O5; bipy?=?2,2′-bipyridine, C10H8N2) was synthesized from cobalt acetate, demethylcantharidin, and bipy. This complex was characterized by elemental analysis, molar conductance, infrared spectra, and X-ray single-crystal diffraction. It crystallized in orthorhombic crystal system and Pbca space group. The DNA binding of the complex was investigated by electronic absorption spectra and viscosity measurements. The complex binds to DNA via partial intercalation with binding constant K b of 4.02?×?104?L?M?1. The complex could quench the intrinsic fluorescence of bovine serum albumin through static quenching. The binding constant K A was 7.28?×?106?L?M?1 and binding site was one.  相似文献   

9.
The interaction between novel spiro thiazolo[3,2-a][1,3,5]triazines (NSTT) and bovine serum albumin (BSA) was investigated using fluorescence and ultraviolet spectroscopy at different temperatures (302 and 310 K) under imitated physiological conditions. The experimental results show that the fluorescence quenching mechanism between NSTT and BSA is by a static quenching mechanism. The binding constant (K a) and number of binding sites (n) between NSTT and BSA at different temperatures were obtained. Negative values of ?G°, ?H°, and ?S° indicate that the interaction between NSTT and BSA is driven by hydrogen bonds and van der Waals forces. Using the Förster non-radiation energy transfer theory, the binding distance between BSA and NSTT was calculated. These results provide valuable information on the interaction between NSTT and BSA as well as the influence of substituent groups on the interaction.  相似文献   

10.
The interactions between bovine serum albumin (BSA) and two substituted hydroxychromone derivatives of coumarin, 3-hydroxy-7,8,9,10-tetrahydro-6H-benzo[c]chromen-6-on (C3) and 1,3-dihydroxy-7,8,9,10-tetrahy-dro-6H-benzo[c]chromen-6-on (C1.3), were investigated by fluorescence quenching spectra and UV-vis absorption spectra. It was proved that the fluorescence quenching of BSA by C3 and C1, 3 was mainly a result of the formation of C3 and C1.3-BSA complexes. The Stern-Volmer quenching constants, binding constants, binding sites and the corresponding thermodynamic parameters ΔH o, ΔS o and ΔG o at different temperatures were calculated. The results indicated that van der Waals interactions and hydrogen bonds were the predominant intermolecular forces in stabilizing each complex. The detection limits of C3 and C1.3 were 5.08 × 10−7 and 1.11 × 10−7 M in the presence of BSA, respectively.  相似文献   

11.
Bis(2-ethylhexyl)phthalate (DEHP) is one of the biggest selling synthetic plasticizers which can migrate to environment and enter human body via air, water, medical apparatus, and food. In this paper, three-dimensional fluorescence (3D-FL) spectroscopy, UV–visible absorption spectroscopy and circular dichroism (CD) spectroscopy were employed to explore the binding of DEHP to bovine serum albumin (BSA) at the physiological conditions. The number of binding sites n and observed binding constant K b was measured by fluorescence quenching method. It was found that the fluorescence quenching was static quenching mechanism and caused by the formation of DEHP–BSA complex at ground state. The enthalpy change (ΔH θ), Gibbs free energy change (ΔG θ) and entropy change (ΔS θ) were calculated at four different temperatures. Site marker competitive displacement experiments were carried out to identify the binding location. The results demonstrated that DEHP bound primarily on Sudlow’s site I in domain IIA of BSA molecule. The distance r (2.95?nm) between donor (BSA) and acceptor (DEHP) was obtained based on F?rster’s non-radiation fluorescence resonance energy transfer (FRET) theory. Furthermore, the CD spectral results indicated that the secondary structure of BSA changed in presence of high concentration of DEHP, which implied that high level of DEHP in plasma was potentially poisonous. The study is helpful to evaluating the health risk of DEHP and understanding its functional effects on protein during the blood transportation process.  相似文献   

12.
Sonodynamic therapy (SDT) is an attractive antitumor treatment for recent years. In this paper, sodium magnesium chlorophyllin (SMC) as a sonosensitizer combining with ultrasonic (US) irradiation to damage bovine serum albumin (BSA) has been investigated by fluorescence and UV–vis spectroscopy. The interaction of BSA with SMC was studied by the quenching of intrinsic fluorescence at varying temperature. The quenching constants (KSV), effective binding constants (KA), apparent association constants (Ka) and binding site numbers were determined. The results indicated the quenching mechanism is a static procedure. Thermodynamic parameters show that the interactions involve hydrogen bonds, hydrophobic interactions, electrostatic interactions and complexations. The binding distance is 3.533 nm. The synergistic effect of SMC and ultrasound was estimated including the study of damage conditions. Synchronous fluorescence spectra indicate the damage to Trp residues is more serious. This paper may offer some valuable references for using spectroscopy method to study the application of chlorophyll derivatives in antitumor treatment.  相似文献   

13.
The mechanism of binding of the surfactant–cobalt(III) complex, cis-[Co(phen)2(C14H29NH2)Cl](ClO4)2⋅3H2O (phen = 1,10-phenanthroline, C14H29NH2 = tetradecylamine) with bovine serum albumin (BSA) was investigated by UV–vis absorption, circular dichroism (CD) and fluorescence spectroscopic techniques. The results of fluorescence titration revealed that the surfactant–cobalt(III) complex quenched the intrinsic fluorescence of BSA through a combination of static and dynamic quenching. The apparent binding constant (K a) and number of binding sites (n) were calculated below and above the critical micelle concentration (CMC). The thermodynamic parameters determined by the van’t Hoff analysis of the constants (ΔH =14.87 kJ⋅mol−1; ΔS =152.88 J⋅mol−1⋅K−1 below the CMC and 25.70 kJ⋅mol−1 and 243.14 J⋅mol−1⋅K−1, respectively, above the CMC) clearly indicate that the binding is entropy-driven and enthalpically disfavored. Based on F?rster’s theory of non-radiation energy transfer, the binding distance, r, between donor (BSA) and the acceptor (surfactant–cobalt(III) complex) was evaluated. UV–vis, CD and synchronous fluorescence spectral results showed that the binding of the surfactant–cobalt(III) complex to BSA induced conformational changes in BSA.  相似文献   

14.
The interaction between a water-soluble cationic fluorescent conjugated polymer (WCFP) and bovine serum albumin (BSA) was studied using UV?CVis absorption, fluorescence and circular dichroism spectroscopies. The results show that the fluorescence of BSA is strongly quenched by the WCFP under physiological conditions (pH?=?7.4). The quenching mechanism was found to be static, which was confirmed by the quenching rate constant (Kq) and UV?CVis absorption spectra. The thermodynamic parameters (?H ??, ?S ?? and ?G ??) calculated from the complexation constant, determined according to Lineweaver?CBurk equations are 38.6?kJ·mol?1, 228?J·mol?1·K?1 and ?29.4?kJ·mol?1 at 298?K. The principal interaction was proposed to be electrostatic.  相似文献   

15.
The interaction between colloidal AgTiO2 nanoparticles and bovine serum albumin (BSA) was studied by using absorption, steady state, time resolved and synchronous fluorescence spectroscopy measurements. Absorption spectroscopy proved the formation of a ground state BSA?AgTiO2 complex. Upon excitation of BSA, colloidal AgTiO2 nanoparticles effectively quenched the intrinsic fluorescence of BSA. The number of binding sites (n = 1.06) and apparent binding constant (K = 3.71 × 105 M−1) were calculated by the fluorescence quenching method. A static mechanism and conformational changes of BSA were observed.  相似文献   

16.
As a kind of folk medicine, edible mushrooms are known to be of medicinal characteristics, for example antitumor activity. However, the mechanism is not clear. In this study, the fluorescence (FL) spectroscopy was used to study the binding reactions of polysaccharide extracted from Auricularia polytricha with quantum dots (QDs). The modified Stern–Volmer quenching constant at different temperatures and corresponding thermodynamic parameters were calculated (?G?<?0, ?H?<?0, and ?S?<?0). The results show that the quenching constant is inversely correlated with temperature. It indicates that the quenching mechanism is the static quenching in nature rather than dynamic quenching. The negative values of free energy (?G?<?0) suggest that the binding process is spontaneous; ?H?<?0 and ?S?<?0 suggest that the binding of polysaccharide to QDs is enthalpy-driven. QDs were found to damage the plasmid DNA according to atomic force microscopy images. DNA damage is the important factor to induce tumor. Many chemical substances can induce tumor, which has been proved by modern medical science. In the presence of polysaccharide from A. polytricha, however, DNA was protected from damage due to polysaccharide winding around QDs, which is the basis for the bioeffect of polysaccharides. This study helps to understand that antitumor activity of edible mushrooms is attributed to protection of DNA from damage in the presence of harmful substances.  相似文献   

17.
Human saliva quantitative monitoring of clarithromycin (CLA) by chemiluminescence (CL) with flow injection analysis was proposed for the first time, which was based on the quenching effect of CLA on luminol–bovine serum albumin (BSA) CL system with a linear range from 7.5?×?10?4 to 2.0 ng/ml. This proposed approach, offering a maximum sample throughput of 100 h?1, was successfully applied to the quantitative monitoring of CLA levels in human saliva during 24 h after a single oral dose of 250 mg intake, with recoveries of 95.2~109.0 % and relative standard deviations lower than 6.5 % (N?=?7). Results showed that CLA reached maximum concentration of 2.28?±?0.02 μg/ml at approximately 3 h, and the total elimination ratio was 99.6 % in 24 h. The pharmacokinetic parameters including absorption rate constant (0.058?±?0.006 h?1), elimination rate constant (0.149?±?0.009 h?1) and elimination half-life time (4.66?±?0.08 h) were obtained. A comparison of human saliva and urine monitoring was also given. The mechanism study of BSA–CLA interaction revealed the binding of CLA to BSA is an entropy driven and spontaneous process through hydrophobic interaction, with binding constant K BSA–CLA of 4.78?×?106 l/mol and the number of binding sites n of 0.82 by flow injection–chemiluminescence model. Molecular docking analysis further showed CLA might be in subdomain IIA of BSA, with K BSA–CLA of 6.82?×?105 l/mol and ΔG of ?33.28 kJ/mol.  相似文献   

18.
In this paper, several rare earth [terbium(III), ytterbium(III) and yttrium(III)] complexes containing 2,9-dimethyl-1,10-phenanthroline (Me2Phen) were successfully synthesized and characterized by means of elemental analysis (CHN), infrared spectroscopy (FT-IR), UV–vis absorption spectroscopy and 1HNMR. To explore the potential medicinal value of these complexes (MMe2Phen), their binding interactions with human serum albumin (HSA) were investigated through UV–vis and fluorescence spectroscopies and also molecular docking examinations. The thermodynamic parameters, binding forces and Förster resonance distance between these complexes and Trp-214 of HSA were estimated from the analysis of fluorescence measurements. The values of estimated binding constants (Kb) ranging for the formation of MMe2Phen:HSA complex were in the order of 105 M?1. The thermodynamic parameters determined by van’t Hoff analysis of KbH°?<?0 and ΔS°?<?0) clearly indicate the major rules of hydrogen bonds and van der Waals interactions in the formation process of MMe2Phen:HSA. The values of Stern–Volmer constant and the evaluation of dynamic quenching constant at various temperatures provided good evidences for static quenching mechanism. Furthermore, the results of molecular docking calculation and competitive binding experiments represent the binding of these complexes to site 3 of HSA located in subdomain IB, containing both polar and apolar residues. The consistency of computational and experimental results, according to the binding sites and the order of binding affinities (TbMe2Phen?>?YbMe2Phen?>?YMe2Phen), supports the accuracy of docking calculation.  相似文献   

19.
The potential effect of human exposure to carbonaceous nanomaterials (e.g., fullerenes or their derivatives) in the environment has become a concern. In the current study, we report the interaction of one water-soluble fullerene with bovine serum albumin using spectroscopic and electrochemical methods under aqueous solutions. The novel supramolecular inclusion complex of the water-soluble fullerene (β-CD)2/C60 was synthesized and characterized. In the mechanism discussed, the spectroscopic methods such as fluorescence quenching and ultraviolet-visible absorption, proved that the fluorescence quenching of BSA by (β-CD)2/C60 was the result of the formation of (β-CD)2/C60-BSA complex and that the mechanism of quenching might be a static quenching procedure. The binding constants Ka, the number of binding sites n, and the corresponding thermodynamic parameters ΔG, ΔH, and ΔS at different temperatures were calculated through fluorescence spectroscopy, then as an auxiliary method, the electrochemical impedance spectroscopy (EIS) experiments confirmed this conclusion. The results indicated that the electrostatic interactions play a major role in (β-CD)2/C60-BSA association. The circular dichroism spectra show the conformation change of the effect of (β-CD)2/C60 on the conformation of BSA, which was confirmed by the results of the three-dimensional fluorescence spectra. Site marker competitive experiments indicate that the binding of (β-CD)2/C60 to BSA primarily took place in site I. The distance r between donor (BSA) and acceptor ((β-CD)2/C60) was obtained according to fluorescence resonance energy transfer (FRET). This work aims to demonstrate the mechanisms of the formation of the complex between water-soluble fullerene and protein under physiological conditions, as well as the remediation for the possible unwarranted biological effects of water-soluble fullerene.  相似文献   

20.
The interaction between vitamin B2 (VB2), a type of necessary nutrient for the body’s metabolism and repair, and trypsin, a serine protease found in the digestive system, has been investigated in vitro under a simulated physiological condition by UV–Vis spectrophotometry and fluorescence spectrometry. The intrinsic fluorescence intensity of trypsin was strongly quenched by VB2. Spectrophotometric observations are rationalized in terms of a static quenching process at lower concentrations of VB2 and a combined quenching (both dynamic and static) process at higher concentrations of VB2. The binding parameters, such as the binding constants and the number of binding sites, can be evaluated by fluorescence quenching experiments. The apparent binding constants K between VB2 and trypsin at different temperatures were 1.406, 1.264, and 0.543 × 106 L mol?1 and the numbers of binding sites n were 1.386, 1.391, and 1.319, which were all evaluated by the fluoresence quenching experiments. The negative values of ΔG for the formation of the trypsin–VB2 complex implied that the binding was a spontaneous process. According to the van’t Hoff equation, the standard enthalpy change (ΔH) and standard entropy change (ΔS) for the reaction were calculated to be ?49.817 kJ mol?1 and ?56.219 J mol?1 K?1, respectively, indicating that the hydrophobic interaction played a significant role in VB2 binding to trypsin. In addition, the binding distance between VB2 (acceptor) and trypsin (donor) was estimated to be 1.11 nm according to Förster’s resonance energy transfer theory. The results obtained here will be of biological significance in pharmacology and clinical medicine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号