首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到12条相似文献,搜索用时 125 毫秒
1.
研究了零攻角小钝头圆锥高超音速边界层的稳定性及转捩预测问题.小钝头的球头半径为0.5 mm,锥的半锥角为5°,来流马赫数为6.采用直接数值模拟方法得到了钝锥的基本流场,利用线性稳定性理论分析了等温壁面和绝热壁面条件下的第一、第二模态不稳定波,并用“e-N”方法对转捩位置进行了预测.在没有实验给出N值的情况下,暂取N为10.研究发现,壁面温度条件对于转捩位置有较大影响.绝热边界层的转捩位置比等温边界层的靠后.且尽管高马赫数下第二模态波的最大增长率远大于第一模态波的最大增长率,但绝热边界层的转捩位置是由第一模态不稳定波决定的.研究方法应能推广到有攻角的三维边界层流动的转捩预测.  相似文献   

2.
近十年来,计算非定常无粘可压气体力学Euler方程组的高分辨率差分格式有显着进展.本文选择四个近年受到重视的格式,用一较复杂的二维不定常问题作进一步的考验.所选算例为平面激波遇矩形障碍物初始阶段的绕射与反射.在挡板头部有两个尖角点,角点附近流场参量变化剧烈,会有中心稀疏波和集中涡的出现,要模拟好它们,就要求格式有较好的适应性.本文选择特殊的激波马赫数Ms=2.068,使静止坐标系下激波后流速恰为声速,并沿中心稀疏波区从角点发出的一条曲线也有这一现象,以考察各格式在方程组某一特征值恰为零时的计算特点,因零特征值可以使某些格式局部受损.计算结果的图形显示可表明四个格式在激波分辨率,格式粘性、膨胀波的计算、模拟非定常集中涡产生过程的能力等方面的性质.  相似文献   

3.
The effects of dissociation of air on hypersonic flow past a circular cylinder at zero angle of incidence are considered under the assumptions that the shock wave is in the shape of a circular cylinder, the density ratio across the shock is constant, the flow behind the shock is at constant density and dissociation occurs only behind the shock wave. In the present paper, the velocity, pressure and drag coefficients, vorticity, shock detachment distance, stagnation point velocity gradient and sonic points on the shock and the surface have been obtained in the presence of dissociation. The results have been compared with the corresponding results obtained in the case when dissociation dose not occur and the corresponding results in the case of the sphere in the presence of dissociation.  相似文献   

4.
We establish the existence of a global solution to a regular reflection of a shock hitting a ramp for the pressure gradient system of equations. The set-up of the reflection is the same as that of Mach's experiment for the compressible Euler system, i.e., a straight shock hitting a ramp. We assume that the angle of the ramp is close to 90 degrees. The solution has a reflected bow shock wave, called the diffraction of the planar shock at the compressive corner, which is mathematically regarded as a free boundary in the self-similar variable plane. The pressure gradient system of three equations is a subsystem, and an approximation, of the full Euler system, and we offer a couple of derivations.  相似文献   

5.
The effects of dissociation or ionization of air on the analytical solution for hypersonic flow past a sphere are considered here, under certain assumptions. It has been assumed that the shock wave is in the shape of a sphere, that the density ratio across the shock is constant, that the flow behind the shock is at constant density and that dissociation or ionization only occurs behind the shock wave. Thus the effects of the compressibility of the air, variation of density ratio along the shock, and the department of the shock shape from being circular are not taken into account. Here the velocity, pressure, temperature, pressure coefficient and vorticity, etc., at any point between the shock and the surface of the sphere in the presence of dissociation or ionization are obtained. In addition, shock detachment distance, drag coefficient, stagnation point velocity gradient and sonic points on the shock and the surface have also been obtained. The results have been compared with the corresponding results obtained in the case when dissociation or ionization does not occur behind the shock.  相似文献   

6.
反射型激波风洞中激波与边界层的相互作用   总被引:1,自引:0,他引:1  
本文研究了反射型激波风洞中由于非完全反射对激波与壁面边界层相互作用的影响,给出了在反射激波坐标系中计算边界层速度分布、温度分布和马赫数分布的计算方法.算例表明,在计及氮气的平衡真实气体效应的情形下,随着入射激波马赫数Ms的增大,边界层的最小马赫数从壁面处移到边界层内;随着喷管喉道面积的增大,边界层的最小马赫数、反射激波的分叉角α和分叉区后的射流速度均随之减小.计算结果与实验值相比是一致的.  相似文献   

7.
The analytical solution to the steady, compressible, non-viscous, inviscid hypersonic flow past a circular cone at an angle of incidence, with an attached Shockwave, in the presence of dissociation of air in the shock layer, has been obtained here under the assumption of thermal equilibrium. Expression for the velocity, pressure, temperature, density, velocity of air, Mach number, pressure, drag and lift coefficients have been obtained both in the shocklayer outside the vortical layer and on the surface of the cone inside the vortical layer.  相似文献   

8.
This paper is devoted to studying the local structure of Mach reflection, which occurs in the problem of the shock front hitting a ramp. The compressible flow is described by the full unsteady Euler system of gas dynamics. Because of the special geometry, the motion of the fluid can be described by self-similar coordinates, so that the unsteady flow becomes a pseudo-stationary flow in this coordinate system. When the slope of the ramp is less than a critical value, the Mach reflection occurs. The wave configuration in Mach reflection is composed of three shock fronts and a slip line bearing contact discontinuity. The local existence of a flow field with such a configuration under some assumptions is proved in this paper. Our result confirms the reasonableness of the corresponding physical observations and numerical computations in Mach reflection.

In order to prove the result, we formulate the problem to a free boundary value problem of a pseudo-stationary Euler system. In this problem two unknown shock fronts are the free boundary, and the slip line is also an unknown curve inside the flow field. The proof contains some crucial ingredients. The slip line will be transformed to a fixed straight line by a generalized Lagrange transformation. The whole free boundary value problem will be decomposed to a fixed boundary value problem of the Euler system and a problem to updating the location of the shock front. The Euler system in the subsonic region is an elliptic-hyperbolic composite system, which will be decoupled to the elliptic part and the hyperbolic part at the level of principal parts. Then some sophisticated estimates and a suitable iterative scheme are established. The proof leads to the existence and stability of the local structure of Mach reflection.

  相似文献   


9.
The problem of a particle impacting on a wall, a common phenomenon in particle-laden flows in the minerals and process industries, is investigated computationally using a spectral-element method with the grid adjusting to the movement of the particle towards the wall. Remeshing is required at regular intervals to avoid problems associated with mesh distortion and the constantly reducing maximum time-step associated with integration of the non-linear convective terms of the Navier–Stokes equations. Accurate interpolation between meshes is achieved using the same high-order interpolation employed by the spectral-element flow solver. This approach allows the full flow evolution to be followed from the initial approach, through impact and afterwards as the flow relaxes. The method is applied to the generic two-dimensional and three-dimensional bluff body geometries, the circular cylinder and the sphere. The principal case reported here is that of a particle colliding normally with a wall and sticking. For the circular cylinder, non-normal collisions are also considered. The impacts are studied for moderate Reynolds numbers up to approximately 1200. A cylindrical body impacting on a wall produces two vortices from its wake that convect away from the cylinder along the wall before stalling while lifting induced wall vorticity into the main flow. The situation for a sphere impact is similar, except in this case a vortex ring is formed from the wake vorticity. Again, secondary vorticity from the wall and particle plays a role. At higher Reynolds number, the secondary vorticity tends to form a semi-annular structure encircling the primary vortex core. At even higher Reynolds numbers, the secondary annular structure fragments into semi-discrete structures, which again encircle and orbit the primary core. Vorticity fields and passive tracer particles are used to characterize the interaction of the vortical structures. The evolution of the pressure and viscous drag coefficients during a collision are provided for a typical sphere impact. For a Reynolds number greater than approximately 1000 for a sphere and 400 for a cylinder, the primary vortex core produced by the impacting body undergoes a short-wavelength instability in the azimuthal/spanwise direction. Experimental visualisation using dye carried out in water is presented to validate the predictions.  相似文献   

10.
The two-dimensional nonequilibrium hypersonic free jet boundary layer gas flow in the near wake of a body is studied using a closed system of macroscopic equations obtained (as a thin-layer version) from moment equations of kinetic origin for a polyatomic single-component gas with internal degrees of freedom. (This model is can be used to study flows with strong violations of equilibrium with respect to translational and internal degrees of freedom.) The solution of the problem under study (i.e., the kinetic model of a nonequilibrium homogeneous polyatomic gas flow in a free jet boundary layer) is shown to be related to the known solution of the well-studied simpler problem of a Navier-Stokes free jet boundary layer, and a method based on this relation is proposed for solving the former problem. It is established that the gas flow velocity distribution along the separating streamline in the kinetic problem of a free jet boundary layer coincides with the distribution obtained by solving the Navier-Stokes version of the problem. It is found that allowance for the nonequilibrium nature of the flow with respect to the internal and translational degrees of freedom of a single-component polyatomic gas in a hypersonic free jet boundary layer has no effect on the base pressure and the wake angle.  相似文献   

11.
A circular cylinder is at rest in a compressible fluid witha given circulation K'. At time t=0 the cylinder is made tomove with low Mach number along a straight line perpendicularto its axis. A modified matching argument is used to describethe sound field induced by the lifting body. The velocity potentialin the sound field can be represented, to leading order, interms of a moving line dipole aligned along the direction ofmotion together with a transverse dipole sheet that extendsfrom the starting location of the centre of the cylinder toits current location. The next-order term is that of a movingline source. The line dipole accounts for the motion of thecylinder. The dipole sheet represents the sound field due tothe circulatory motion. If the circulation is constant, thenso is the strength of the dipole sheet and the time dependencearises from the changing length of the layer. In a more realisticcase, where vorticity is shed to form a wake behind the movingbody, there is a corresponding change in the circulation andin the strength of the evolving dipole sheet.  相似文献   

12.
The compressible Navier-Stokes equations discretized with a fourth order accurate compact finite difference scheme with group velocity control are used to simulate the Richtmyer-Meshkov (R-M) instability problem produced by cylindrical shock-cylindrical material interface with shock Mach number Ms=1.2 and density ratio 1:20 (interior density/outer density). Effect of shock refraction, reflection, interaction of the reflected shock  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号