共查询到20条相似文献,搜索用时 9 毫秒
1.
2.
利用纳米金膜(GNF)和稳定的Y 型DNA 成功构建了一种具有良好选择性和较低检测限的DNA 传感器. 首先将金电极快速氧化后还原制成GNF, 利用Au-S 键将捕获探针DNA (c-DNA)有效地固定到GNF 电极表面, 在目标物存在的情况下, 将其与标记有亚甲蓝(MB)的指示探针(r-DNA)杂交形成Y 型结构. 利用GNF 独特的纳米性质和形成的Y型DNA 结构特点, 使MB 接近GNF, 从而提高了电子传递速率, 以差分脉冲伏安法(DPV)实现DNA 特定序列的检测,检测线性范围为1.0×10-12~1.0×10-9 mol/L, 检测下限为2.4×10-13 mol/L. 与传统的传感器相比, 本方法提高了选择性, 减小了背景电流. 此外, 该传感器表现出良好的重现性和稳定性. 相似文献
3.
亚硝酸盐是一种广泛存在的原料,长期食用会对人体健康不利甚至致癌。因此,简单、灵敏的亚硝酸盐检测方法的开发具有非常重要的意义。本文合成了金/还原氧化石墨烯/羟基氧化铁(Au/rGO/FeOOH)复合材料,并通过SEM、 XRD和EDX等测试进行了材料表征。将合成的复合材料滴涂在氧化氟锡(FTO)电极表面,利用它们的协同催化氧化性能,成功构建了一步检测亚硝酸盐(NO2-)的新型电化学传感器。在最佳优化实验条件下, 通过差分脉冲伏安法实现NO2-的定量检测, 其线性范围为0.001 ~ 5 mmol·L-1, 检出限为0.8 μmol·L-1(S/N = 3), 且响应时间小于2 s。同时, 所制备的传感器表现出良好的选择性和重现性, 也能用于实际样品的测定。 相似文献
4.
磁性纳米金共价固定癌胚抗原单克隆抗体的电流型免疫传感器 总被引:4,自引:2,他引:4
合成了Fe3O4/Au磁性复合纳米粒子, 在粒子表面通过自组装硫脲分子使表面氨基化, 再用戊二醛共价交联固定癌胚抗原抗体(anti-CEA). 在外加磁场的作用下, 将anti-CEA复合磁性粒子吸附在固体石蜡碳糊电极表面, 制成了新型电流型免疫传感器. 免疫电极在含有癌胚抗原CEA和辣根过氧化物酶标记的癌胚抗原(HRP-CEA)的混合溶液中温育, CEA和HRP-CEA与固定在电极表面的anti-CEA发生竞争反应, 导致HRP对H2O2的催化降解作用的改变, 从而可间接测定CEA. 由于标记的HRP可催化降解H2O2, 导致媒介体间苯二酚浓度改变, 使测定的灵敏度大大提高. 响应电流与CEA质量浓度的对数在2~160 ng/mL的范围内呈线性关系, 检出限为0.57 ng/mL(3σ法). 该免疫传感器具有制作简单、价廉及表面易于更新等特点. 相似文献
5.
通过原位聚合法制备了金纳米颗粒(Au NPs)掺杂的聚苯胺(PANI)纳米复合材料,该复合材料修饰的电极(Au/PANI/GCE)对亚硝酸根(NO2-)的氧化具有明显的电催化活性,其独特且均匀分散的蘑菇状结构可以掺杂更多的Au NPs,提供较多的活性位点和较大的比表面积,有助于提高电化学催化NO2-的效果。导电聚合物PANI中可质子化的苯胺(PhNH3+)与溶液中带负电荷的NO2-产生静电吸附可促进电子的传递。Au/PANI/GCE对NO2-的检出限为0.6876μmol/L,线性范围为10~2400μmol/L,线性相关系数R2=0.9957,该传感器为实际湖水样品中亚硝酸盐检测提供了新方法。 相似文献
6.
亚硝酸盐是环境和生物循环中不可或缺的一部分,但其浓度超标不仅会污染环境,还会致癌。因此对亚硝酸盐实现高效、快速精密检测具有重要的科学和实际意义。基于电化学传感技术的污染物分析与检测已成为研究热点,尤其工作电极的选用和设计对提升响应速度、灵敏度、检测限及降低成本、简化操作等至关重要而备受研究者广泛关注。本文将以玻碳电极、碳糊电极、金属薄膜、聚合物薄膜及碳布电极为分类,针对亚硝酸盐的检测,详细综述基于不同电极的电化学传感器的研究进展。以期通过构建方法和电催化性能的对比为构建新型传感器提供理论与实际指导。 相似文献
7.
构建了包埋于壳聚糖(CS)膜中的血红蛋白(Hb)和血红素(Hemin)的亚硝酸盐传感器并研究了它们在电极表面的电化学活性。在pH 4.0磷酸盐缓冲溶液中,利用示差脉冲伏安法分别研究CS/Hb-GCE、CS/Hemin-GCE对亚硝酸盐的电化学响应,基于此建立了对亚硝酸盐的电化学测定方法;结果表明,两种电极对亚硝酸盐响应的线性范围分别为0.069~25.86和0.50~16.67mmol/L,检测限分别为0.012和0.25mmol/L,而且对前者具有更低的检测限和更宽的线性范围的可能原因进行了探讨。 相似文献
8.
意义:本研究为构建基于血红素蛋白的亚硝酸盐传感器打下一定基础。目的:本研究构建了包埋于壳聚糖(CS)膜中的血红蛋白(Hb)和血红素(Hemin)的亚硝酸盐传感器。研究了它们在电极表面的电化学活性。方法:在pH 4.0 PBS,利用示差脉冲伏安法(DPV)分别研究CS/Hb-GCE、CS/Hb-GCE对亚硝酸盐的电化学响应,基于此建立了对亚硝酸盐的电化学测定方法。结论: CS/Hb-GCE修饰电极对亚硝酸盐响应的线性范围为0.069~25.86 mmol/L,检测限为0.012 mmol/L。CS/Hemin-GCE对NO2-响应的线性范围0.50~16.67 mmol/L,检测限为0.25 mmol/L。发现CS/Hb-GCE修饰电极对NO2-响应具有更低的检测限和更宽的线性范围,对其可能的原因进行了探讨。 相似文献
9.
利用新型材料金纳米空球, 通过层层修饰的技术, 分别将壳聚糖、空壳纳米金、L-半胱氨酸、细胞色素c以及ssDNA探针修饰到玻碳电极表面, 制备了一种新型的DNA生物传感器. 以紫外及透射电子显微镜(TEM)表征了空壳纳米金, 以循环伏安法、阻抗谱图等电化学方法研究了传感器的特性, 通过原子力显微镜方法观察了该DNA生物传感器不同层之间的形态差异. 结果表明, 该修饰电极所吸附的ssDNA探针为1.672×10―10 mol•cm-2. 在指示剂柔红霉素的帮助下, DNA探针可与互补的DNA进行杂交, 借此以微分脉冲伏安法测定DNA. 相似文献
10.
11.
以DNA杂交双链为联接, 构建纳米金颗粒Core-satellites结构并激发等离子体耦合增强效应,利用Hg2+可与DNA中胸腺嘧啶T形成T-Hg2+-T特异性结构,研制了用于检测水中Hg2+的局域等离子体共振(LSPR)光纤传感器.待测溶液中的Hg2+能够引起富含T的DNA单链折叠,抑制DNA杂交反应,降低等离子体耦合强度,改变LSPR谐振波长.通过检测谐振波长红移变化,实现对Hg2+浓度的定量检测.本方法检测Hg2+的线性范围为5~150 nmol/L, 检出限为3.4 nmol/L (3σ). Zn2+、Mg2+、Pb2+等重金属离子对Hg2+检测无明显干扰作用.实际水样中Hg2+加样回收率为94.2%~105.4%,相对标准偏差<4.8%. 相似文献
12.
该文以聚苯乙烯微球为模板,利用电化学方法制备了金纳米颗粒(Au NPs)掺杂的三维多孔聚3,4-乙烯二氧噻吩(PEDOT)纳米材料,该材料对亚硝酸盐的氧化展现出优异的电催化活性,这是由于其独特的三维(3D)纳米多孔结构可以掺杂更多的Au NPs,从而提供大量的活性位点用于亚硝酸盐的催化。此外,3D孔状结构还可促进亚硝酸盐离子的扩散从而加快电子的传递。所构建的传感器用于亚硝酸盐的检测,其线性范围为0. 2~2 200μmol/L,检出限为70 nmol/L。该传感器展现出优异的选择性、长期的稳定性和良好的重现性,用于实际样品检测,与标准方法的测试结果一致。 相似文献
13.
制备了易于磁性分离、硫堇(Thi)包覆的四氧化三铁(Fe3O4)纳米复合物。通过静电吸附作用,将萘酚(Nafion)、Thi包覆的Fe3O4复合纳米粒子层层修饰到玻碳电极表面,再利用Thi分子中的氨基吸附纳米金,最后固载甲胎蛋白抗体,从而制得灵敏度高、稳定性好的无试剂电流型甲胎蛋白免疫传感器。实验通过透射电子显微镜(TEM)对该复合纳米粒子进行表征,并用循环伏安法考察了电极的电化学特性。结果表明,Fe3O4/Thi复合纳米粒子修饰的电极在实验过程中呈现出良好的氧化还原活性,其检测范围为0.05~20μg/L,检出限为0.03μg/L。 相似文献
14.
利用阴离子型聚合物聚乙烯吡咯烷酮(PVP)保护的带负电荷的还原态石墨烯(GN)与带正电荷的金纳米棒(AuNR)之间的静电吸附,通过层层自组装的方法研制出一种新型过氧化氢(H2O2)传感器。首先将PVP保护的石墨烯(PVP-GNs)吸附到表面干净的裸玻碳电极(GCE)上,再将PVP-GNs修饰的电极浸泡于金纳米棒溶液中,通过静电吸附将金纳米棒负载在PVP-GNs膜之上。以循环伏安及计时安培电流等方法对修饰电极的性质进行了表征。结果表明,制备的PVP-GNs-AuNRs/GCE对H2O2的催化还原显示出好的电催化活性。测定H2O2的线性范围为25~712μmol/L;检出限(S/N=3)为7.5μmol/L。此传感器制作简单,具有响应快、稳定性好、灵敏度高等特点。 相似文献
15.
基于纳米金与碳纳米管-纳米铂-壳聚糖纳米复合物固定癌胚抗原免疫传感器的研究 总被引:5,自引:0,他引:5
采用纳米金(nano-Au)、多壁碳纳米管-纳米铂-壳聚糖的纳米复合物(MWNT-Pt-CS)及电子媒介体硫堇(Th)固载抗体制得高灵敏癌胚抗原免疫传感器.首先, 于壳聚糖溶液中用NaBH4还原H2PtCl6, 并将多壁碳纳米管分散于其中制得碳纳米管-纳米铂-壳聚糖纳米复合物, 并将其滴涂在玻碳电极上成膜; 然后, 吸附电子媒介体硫堇制得硫堇/碳纳米管-纳米铂-壳聚糖(Th/MWNT-Pt-CS)修饰电极.利用壳聚糖和硫堇分子中大量的氨基固定纳米金并吸附癌胚抗体(anti-CEA); 最后, 用辣根过氧化物酶(HRP)封闭活性位点从而制得高灵敏电流型免疫传感器.在优化的实验条件下, 该传感器响应的峰电流值与癌胚抗原(carcinoembryonic antigen)浓度在0.5~10和10~120 ng/mL的范围内保持良好的线性关系, 检测限为0.2 ng/mL. 相似文献
16.
基于纳米金胶标记DNA探针的电化学DNA传感器研究 总被引:6,自引:0,他引:6
以纳米金胶为标记物,将其标记于人工合成的5-端巯基修饰的寡聚核苷酸片段上,制成了具有电化学活性的金胶标记DNA电化学探针;在一定条件下,使其与固定在玻碳电极表面的靶序列进行杂交反应,利用ssDNA与其互补链杂交的高度序列选择性和极强的分子识别能力,以及纳米金胶的电化学活性,实现对特定序列DNA片段的电化学检测以及对DNA碱基突变的识别. 相似文献
17.
用模板法在氧化铟锡(ITO)电极上制备具有三维有序多孔结构的金掺杂纳米二氧化钛修饰电极(3DOM GTD/ITO),扫描电镜(SEM)结果表明,制备的修饰电极三维结构规整有序、孔径均一。将标记有二茂铁(Fc)的DNA探针修饰到3DOM GTD/ITO电极上构建了一种新的标记型DNA生物传感器,通过Fc在DNA探针杂交前后的电化学信号变化可识别目标靶序列。采用循环伏安(CV)、示差脉冲(DPV)和交流阻抗(EIS)等方法对DNA探针在电极表面的固定和杂交进行表征。实验结果表明,该DNA生物传感器可以成功地识别乳腺癌基因靶序列,Fc的氧化还原电流与靶序列浓度在8.0×10-7~1.0×10-5 mol/L范围内呈线性关系,线性相关系数为0.9908,检测限为5.2×10-7 mol/L。 相似文献
18.
以抗坏血酸(AA)为还原剂,通过一步还原法将氧化石墨烯和氯金酸同时还原,合成石墨烯/金纳米复合材料,并直接滴涂于玻碳电极表面,构建基于石墨烯/金纳米复合材料的无酶葡萄糖传感器。采用循环伏安法和线性扫描伏安法对传感器的性质进行了研究。结果表明,该传感器能催化葡萄糖的氧化,且其氧化峰电流随葡萄糖浓度的增大而增大。测定葡萄糖的线性范围为0.01~2.5mmol/L(R=0.9964),检出限(S/N=3)为3μmol/L。对同一浓度的葡萄糖溶液平行测定8次,其电流强度的相对标准偏差(RSD)为2.6%。该传感器制作简单、稳定性好,将其用于葡萄糖注射液的检测,方法灵敏,其加标回收率为92.9%。 相似文献
19.
本文研究了亚硝酸盐(NO_2~-)在纳米金和β-环糊精复合修饰碳糊电极(AuNPs-β-CD/CPE)上的电化学行为。实验结果表明,与裸CPE相比,AuNPs-β-CD/CPE对NO_2~-的电化学氧化有显著的促进作用,其氧化峰电流显著增加。同时用循环伏安法(CV)、计时电流法(CA)测定了NO_2~-在AuNPs-β-CD/CPE上的电极反应动力学参数,用线性扫描伏安法(LSV)法测得NO_2~-氧化峰电流与其浓度在6.0×10-6~8.0×10-3 mol·L-1范围内呈良好的线性关系,检出限(S/N=3)为5.7×10-7 mol·L-1。将该传感器应用于水样的检测,相对标准偏差在0.15%~1.40%之间,回收率达99.3%~104.0%,检测结果符合定量测定要求。 相似文献
20.
构造了一种以碳纳米管接枝的壳聚糖为基底,然后将羧基二茂铁电聚合在其氨基化的表面,利用负电荷的表面组装PDDA保护的纳米金,最后通过静电吸附葡萄糖氧化酶,制得了新型的葡萄糖生物传感器。在优化的实验条件下,该传感器的响应电流与其浓度在3.0×10-6~2.9×10-3mol/L范围内呈现良好的线性关系,检测限为1.4×10-6mol/L。此外,该传感器还具有灵敏度高、稳定性好和抗干扰能力强等特点。 相似文献