共查询到20条相似文献,搜索用时 0 毫秒
1.
基于金纳米簇强烈的量子限制效应(strong quantum confinement effect,SQCE),采用一步合成法,制备了同时具有高效近红外荧光与CT双模态成像能力的超小金纳米簇.实验表明,通过优化合成比例以及合成条件,所合成的超小金纳米簇具有很大的斯托克斯(Stokes)位移、较高的荧光强度和X射线吸收效率.除此之外,该超小金纳米簇具有良好的单分散性、稳定性和生物相容性.4T1肿瘤细胞荧光成像实验结果表明,该纳米粒子可被肿瘤细胞快速、高效地摄取. 相似文献
2.
基于磁共振与荧光成像的双模态成像技术不仅克服了传统单一分子影像技术在灵敏度、特异度、分辨率等方面的固有缺陷,更是拓宽了分子影像技术在诊断及治疗监控等领域的研究范围及应用前景。本文将对磁共振/荧光双模态分子探针的应用情况和研究进展等进行综述。 相似文献
3.
基于层层(LBL)自组装技术,在Pt-Cu纳米合金表面依次包覆带正电的聚赖氨酸(PLL)和带负电的透明质酸(HA),成功构筑Pt-Cu@PLL@HA纳米平台。HA不仅延长了纳米平台血液循环时间,还可实现肿瘤主动靶向作用,提升肿瘤部位富集效果。在肿瘤区域透明质酸酶(HAase)作用下HA快速降解,释放Pt-Cu@PLL (+)颗粒,有利于肿瘤细胞特异性摄取。基于Pt-Cu合金良好的近红外二区(NIR-Ⅱ)吸收性能,实现了NIR-Ⅱ光声成像引导的NIR-Ⅱ光热高效抗肿瘤效果。 相似文献
4.
为提高生物组织荧光成像质量以及对肿瘤的高效光热治疗,设计合成了一种新型的窄带隙共轭聚合物(BDT-TTQ),并通过纳米沉积的方式将聚合物制备成水溶性纳米粒子(BDT-TTQ NPs).该共轭聚合物纳米粒子在1000~1200 nm近红外二区范围具有较好的吸收,在1064 nm的激发光下能实现1200~1400 nm的近红外二区荧光成像. BDT-TTQ NPs纳米粒子粒径分布较窄,形貌呈规则的球形且分散均匀,具有好的生物相容性.该纳米粒子既可以在体外实现较高的近红外二区荧光成像穿透深度,又可以实现对小鼠活体血管的高清晰度的近红外二区荧光成像.此外,BDT-TTQ NPs纳米粒子在1064 nm激光下展现出优异的光热转换效率,具有较高的光毒性,对体外的肿瘤细胞以及小鼠的异质瘤具有高的光热杀伤能力. 相似文献
5.
6.
7.
在聚乙二醇二胺(NH_2-PEG-NH_2)修饰的石墨烯量子点(GODs)表面以酰胺键偶联二乙基三胺五乙酸(DTPA)分子,之后将Gd~(3+)离子与其进行配合,得到了GODs-Gd(DTPA)复合纳米粒子,然后再通过酰胺键在GODs-Gd(DTPA)的表面修饰叶酸(FA)靶分子,最后进一步将阿霉素(DOX)通过π-π堆垛吸附在造影剂的表面,制备了FA/GODs-Gd(DTPA)/DOX荧光/MRI双模态靶向肺癌细胞成像诊疗试剂,通过透射电子显微镜、紫外可见吸收光谱、荧光光谱和激光共聚焦扫描显微镜等手段表征了其形貌、发光性能和靶向成像性能。MRI、激光共聚焦扫描显微镜和MTT等结果表明,相对于正常的HLF细胞,所制备的FA/GODs-Gd(DTPA)/DOX纳米粒子能够靶向检测FA受体高表达的肺癌H460细胞,并具有明显的抗肿瘤活性。 相似文献
8.
以有机小分子4,9-二(5-9H-芴-2-基-噻吩-2-基)-6',7-联苯[1,2,5]噻二唑并[3,4-g]喹喔啉(TQF)为前驱体, 通过化学方法将其修饰为可引发可逆加成-断裂链转移聚合(RAFT)反应的小分子链转移剂TQF-苯基硫代链 转移剂(CTA). 以TQF-CTA为链转移剂, 以偶氮二异丁腈为引发剂, 引发N-异丙基丙烯酰胺(NIPAAm)和 甲基丙烯酸寡聚乙二醇酯(OEGMA)发生RAFT聚合反应, 合成了具有良好水溶性和较低临界溶解温度(LCST)的小分子基共聚物[TQF-P(NIPAAm-co-OEGMA), TPNO]. 将其直接溶于水中可制备成温敏的球形纳米粒子 TPNO NPs. 研究结果表明, TPNO NPs在温度大于LCST(35 ℃)时表现出一个明显的粒径变化和显著的荧光 增强行为(2.2倍), 并成功实现了对活体小鼠血管与肿瘤的明亮近红外二区(NIR-Ⅱ)荧光成像(FI). 同时, TPNO NPs有着良好的光热转换效率(PCE=29.8%), 通过体外细胞实验证明了其对细胞具有较好的光热治疗(PTT)效果. 相似文献
9.
结合磁共振成像(MRI)和荧光成像技术,以钆离子(Gd3+)、量子点及精氨酸(R)-甘氨酸(G)-天冬氨酸(D)(RGD)多肽等为功能单元,采用纳米载体组装技术构建了MRI弛豫率/荧光效率高和靶向性强的Gd3+与RGD共修饰的量子点双模态纳米探针(QDs@Gd3+-RGD),并将其用于胰腺癌细胞的双模态成像.实验结果表明,QDs@Gd3+-RGD双模态纳米探针具有较高的弛豫率,且能对胰腺癌patu8988细胞进行荧光和T1-weighted MR成像. 相似文献
10.
通过将阳离子型聚合物聚二烯丙基二甲基氯化铵、嵌段共聚物聚(甲基丙烯酸(聚乙二醇单甲醚)酯-b-甲基丙烯酸)和含Gd的多金属氧簇K7(Gd(H2O)3P2W17O61)以及部分还原的K6(α-P2W18O62)共混,构建了纳米尺寸的聚合物包埋多金属氧簇的多组分复合物PDDA-PPBM-rPOMs.实验表明,所制备的复合物在水溶液、磷酸盐缓冲液和细胞培养基溶液中都具有较好的结构稳定性,形成均一分散的直径约为67 nm的球形组装体.磁性金属氧簇的存在和较大的粒子半径使复合物在0.5 T磁场条件下的纵向弛豫效率达到51.32 L?mmol-1?s-1,并且在载药之后没有明显降低.复合物中部分还原的多金属氧簇中的不同价态金属离子之间存在的电荷转移使复合物在载药前后均表现出良好的光热转换能力,其中,载药后的复合物在808 nm激光(1.0 W?cm-2)下持续照射10 min可以产生20℃的温度增量,为其用于肿瘤光热治疗提供了可能. PDDA-P... 相似文献
11.
分子影像在疾病诊断和预后评估,尤其在胃肠道相关疾病成像领域中发挥了重要作用,纳米造影剂的设计合成与临床应用已成为分子影像领域的研究热点。本研究采用溶剂热法制备了聚乙二醇修饰的BaGdF5纳米粒子,并将其用于胃肠道计算机断层扫描(CT)/磁共振(MR)双模成像。此纳米粒子的CT成像效果优于商用碘对比剂。此外,由于引入了Gd元素,此纳米粒子可用于活体层面的MR成像研究。通过透射电子显微镜(TEM)、X-射线衍射仪(XRD)、红外光谱(FT-IR)和热重分析(TGA)等对聚乙二醇修饰BaGdF5纳米粒子进行了表征。细胞MTT实验与活-死细胞染色实验等结果表明,合成的纳米粒子具有极低的细胞毒性和优良的生物相容性;同时,溶血实验结果表明,此纳米粒子具有较高的血液相容性。基于苏木精-伊红(H&E)染色的病理学方法评估了小鼠给药BaGdF5纳米粒子后的体内长期毒性,结果表明,此纳米粒子未造成上下消化道组织损伤,具有较高的生物安全性。BaGdF5纳米粒子在胃肠道CT/MR双模态成像研究中具有良好的应用前景。 相似文献
12.
13.
14.
15.
《高分子学报》2021,52(10):1343-1352
为获得同时具有优异的溶解性,高亮度的近红外二区(NIR-Ⅱ,1000~1700 nm)荧光和强的NIR-Ⅱ光热转换能力的共轭聚合物,采用三元共聚策略构建了基于强电子受体和供体的NIR-Ⅱ发射共轭骨架.在此基础上,进一步通过调控电子给体BDT与2TC之间的比例,得到了一系列具有NIR-Ⅱ吸收和优异溶解性的共轭聚合物(BDT-2TC12,BDT-2TC11,BDT-2TC21).这些聚合物在700~1200 nm具有较强的NIR吸收,并在808 nm激光激发下表现出在1000~1400 nm区域内的优异NIR-Ⅱ荧光性能.利用纳米沉积的方法,将目标聚合物BDT-2TC12用两亲性的二硬脂酰磷脂酰乙酰胺-甲氧基聚乙二醇(DSPE-mPEG)进行包覆,制备得到水溶性良好的纳米粒子(BDT-2TC12NPs).该纳米粒子具有良好的稳定性,在808和1064 nm处均有较强的吸收.在1064 nm激光照射下,纳米粒子表现出优异的NIR-Ⅱ光热转换效果,可以实现对肿瘤细胞的光热治疗(PTT).在808 nm的激光激发下,纳米粒子还可以实现对小鼠血管和其他生物组织的高清晰度的NIR-Ⅱ荧光成像(FI). 相似文献
16.
共轭聚合物纳米粒子(CPNs)因其高荧光亮度、低毒性、表面易修饰的特性,近年来在生物材料和生物医药领域备受关注。本论文中我们设计、合成了一种新的pH 值响应共轭聚合物(PFPA),并通过纳米沉淀方法制备了其纳米粒子。动态光散射实验表明PFPA纳米粒子在水中分散性较好,其粒径约为8 nm。 PFPA纳米粒子的最大吸收峰为379 nm,其摩尔吸光系数为2.1×106 L·mol -1·cm -1;另外该纳米粒子的荧光最大发射峰为422 nm,其荧光量子产率为35%。PFPA纳米粒子在汞灯(100瓦)照射下表现出较好的光稳定性,另外MTT实验表明其具有较低的细胞毒性。该纳米粒子具有pH响应的光学特性,并可以用于活细胞成像。PFPA纳米粒子在癌症诊断、药物与基因传递等方面具有潜在的应用价值。 相似文献
17.
成功地制备了CdTe/Mn_3O_4/SiO_2核壳结构的荧光/磁共振成像双功能纳米球,并用透射电镜(TEM)、能谱分析(EDXA)、磁共振成像(MRI)、红外、荧光光谱等对其结构、磁共振成像和发光性能进行了表征。TEM照片显示所合成的纳米球具有明显的球形核壳结构。EDXA分析显示所制备的CdTe/Mn_3O_4/SiO_2纳米球表面只检测到Si和O元素,证明CdTe量子点和Mn_3O_4纳米立方体被成功地包被于二氧化硅纳米球之内。荧光发射光谱显示相对于CdTe量子点,CdTe/Mn_3O_4/SiO_2纳米球荧光发射光谱虽然发生了一定的蓝移,但是仍具有良好的荧光性能。MRI分析可知CdTe/Mn_3O_4/SiO_2纳米球的弛豫参数(r_1)为3.88 s~(-1)(mg·L~(-1))~(-1),说明所合成的CdTe/Mn_3O_4/SiO_2纳米球可用于T_1-加权磁共振成像。细胞毒性实验表明,当CdTe/Mn_3O_4/SiO_2溶液浓度达到300μg·mL~(-1)时,细胞活力仍可达到90%以上,表明此浓度对细胞的毒性作用较弱。 相似文献
18.
19.
采用无模板法制备了金纳米花, 其形状与粒径大小可以通过改变反应温度和还原剂抗坏血酸的用量来调控; 然后, 通过多巴胺的表面原位聚合反应制备了聚多巴胺修饰的金纳米花, 以提高其在近红外区的吸收能力及生物相容性. 采用透射电子显微镜(TEM)、 紫外-可见吸收光谱(UV-Vis)和纳米粒度/Zeta电位仪等对金纳米花和聚多巴胺修饰金纳米花的形态、 粒径和光学特性进行了表征; 通过傅里叶变换红外吸收光谱(FTIR)分析证明聚多巴胺修饰成功; X射线衍射(XRD)分析结果表明, 聚多巴胺修饰前后金纳米花的晶体结构未变; 最后, 采用噻唑蓝(MTT)法体外评价了聚多巴胺修饰金纳米花的细胞毒性. 研究结果表明, 反应温度越低, 金纳米花表面分支结构越丰富, 以0 ℃为最佳反应温度; 还原剂抗血酸的用量越高, 金纳米花粒径越小; 金纳米花粒径在60~100 nm范围内可调, 最大吸收波长为575~650 nm. 经聚多巴胺修饰后, 金纳米花的最大吸收波长发生了显著红移(>80 nm), 近红外区的吸收范围显著扩大. 通过调控多巴胺溶液浓度, 可将金纳米花表面聚多巴胺层的厚度控制在8~14 nm. 在808 nm激光辐照下, 聚多巴胺修饰金纳米花溶液可迅速升温至57 ℃. 此外, 细胞实验结果表明, 聚多巴胺修饰后金纳米花的细胞毒性更低. 用其对HeLa肿瘤细胞进行光热治疗后, 细胞存活率仅为10%. 因此, 聚多巴胺修饰金纳米花作为光热试剂在肿瘤治疗领域具有潜在的应用前景. 相似文献