首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Leishmaniasis is a vector-borne disease caused by the protozoan parasite Leishmania found in tropical and sub-tropical areas, affecting 12 million people around the world. Only few treatments are available against this disease and all of them present issues of toxicity and/or resistance. In this context, the development of new antileishmanial drugs specifically directed against a therapeutic target appears to be a promising strategy. The GDP-Mannose Pyrophosphorylase (GDP-MP) has been previously shown to be an attractive therapeutic target in Leishmania. In this study, a chemical library of 5000 compounds was screened on both L. infantum (LiGDP-MP) and human (hGDP-MP) GDP-MPs. From this screening, oncostemonol D was found to be active on both GDP-MPs at the micromolar level. Ten alkyl-resorcinol derivatives, of which oncostemonols E and J (2 and 3) were described for the first time from nature, were then evaluated on both enzymes as well as on L. infantum axenic and intramacrophage amastigotes. From this evaluation, compounds 1 and 3 inhibited both GDP-MPs at the micromolar level, and compound 9 displayed a three-times lower IC50 on LiGDP-MP, at 11 µM, than on hGDP-MP. As they displayed mild activities on the parasite, these compounds need to be further pharmacomodulated in order to improve their affinity and specificity to the target as well as their antileishmanial activity.  相似文献   

2.
In continuation of our search for leads from medicinal plants against protozoal pathogens, we detected antileishmanial activity in polar fractions of a dichloromethane extract from Boswellia serrata resin. 11-keto-β-boswellic acid (KBA) could be isolated from these fractions and was tested in vitro against Leishmania donovani axenic amastigotes along with five further boswellic acid derivatives. 3-O-acetyl-11-keto-β-boswellic acid (AKBA) showed the strongest activity with an IC50 value of 0.88 µM against axenic amastigotes but was inactive against intracellular amastigotes in murine macrophages  相似文献   

3.
Entamoeba histolytica (protozoan; family Endomoebidae) is the cause of amoebiasis, a disease related to high morbidity and mortality. Nowadays, this illness is considered a significant public health issue in developing countries. In addition, parasite resistance to conventional medicinal treatment has increased in recent years. Traditional medicine around the world represents a valuable source of alternative treatment for many parasite diseases. In a previous paper, we communicated about the antiprotozoal activity in vitro of the methanolic (MeOH) extract of Ruta chalepensis (Rutaceae) against E. histolytica. The plant is extensively employed in Mexican traditional medicine. The following workup of the MeOH extract of R. chalepensis afforded the furocoumarins rutamarin (1) and chalepin (2), which showed high antiprotozoal activity on Entamoeba histolytica trophozoites employing in vitro tests (IC50 values of 6.52 and 28.95 µg/mL, respectively). Therefore, we offer a full scientific report about the bioguided isolation and the amebicide activity of chalepin and rutamarin.  相似文献   

4.
Human American trypanosomiasis, called Chagas disease, caused by T. cruzi protozoan infection, represents a major public health problem, with about 7000 annual deaths in Latin America. As part of the search for new and safe anti-Trypanosoma cruzi derivatives involving nitroheterocycles, we report herein the synthesis of ten 1-substituted 2-nitropyrrole compounds and their biological evaluation. After an optimization phase, a convergent synthesis methodology was used to obtain these new final compounds in two steps from the 2-nitropyrrole starting product. All the designed derivatives follow Lipinski’s rule of five. The cytotoxicity evaluation on CHO cells showed no significant cytotoxicity, except for compound 3 (CC50 = 24.3 µM). Compound 18 appeared to show activity against T. cruzi intracellular amastigotes form (EC50 = 3.6 ± 1.8 µM) and good selectivity over the vero host cells. Unfortunately, this compound 18 showed an insufficient maximum effect compared to the reference drug (nifurtimox). Whether longer duration treatments may eliminate all parasites remains to be explored.  相似文献   

5.
The identification of new compounds is urgent to develop safe and efficacious candidates for leishmaniasis treatment, especially from natural products as a potential source of active molecules against neglected tropical parasite diseases. Inspired by the efficacious quinoline alkaloid microbial effects, we have previously reported the synthesis and biological activity of 2-phenylquinoline-4-carboxylic acids and poly-substituted quinolines against parasites. In this work, a series of eighteen 2-styryl-4-quinolinecarboxylic acids were synthesized under microwave irradiation settings obtaining from good to excellent yields (60%-90%), shorter reaction times (2 minutes), and eco-friendly experimental conditions. All these products were evaluated against infective forms of Leishmania (Leishmania) amazonensis, such as promastigotes and intracellular amastigotes, based on cytotoxicity assays, including host macrophage infection assays. Compounds 4 and 5 possessing a 2-chloro or 4-chlorostyryl moiety, respectively, were considered the most promising antileishmanial agents due to the parasite killing effect in intracellular forms inside infected macrophages. Thus, our results revealed that the 2-styryl-4-quinolinecarboxylic acid backbone structure was essential for the activity against intracellular pathogens like L. (L.) amazonensis.  相似文献   

6.
The colloid stability of supramolecular assemblies composed of the synthetic cationic lipid dioctadecyldimethylammonium bromide (DODAB) on carboxymethyl cellulose (CMC) supported on polystyrene amidine (PSA) microspheres was evaluated via turbidimetry kinetics, dynamic light scattering for particle sizing, zeta-potential analysis, and determination of DODAB adsorption on CMC-covered particles. At 0.1 g L(-1) CMC and 2 x 10(11) PSA particles/mL, CMC did not induce significant particle flocculation, and a vast majority of CMC-covered single particles were present in the dispersion so that this was the condition chosen for determining DODAB concentration (C) effects on particle size and zeta potentials. At 0.35 mM DODAB, charge neutralization, maximal size, and visible precipitation indicated extensive flocculation and minimal colloid stability for the DODAB/CMC/PSA assembly. At 0.1 g L(-1) CMC, isotherms of high affinity for DODAB adsorption on CMC-covered particles presented a plateau at a limiting adsorption of 700 x 10(17) DODAB molecules adsorbed per square meter PSA which was well above bilayer deposition on a smooth particle surface. The polyelectrolyte layer on hydrophobic particles was swelled and fluffy (ca. 11-nm hydrodynamic thickness), and maximal adsorption of DODAB lipid onto this layer produced a compressed composite cationic film with 20 mV of zeta potential and about 10-nm mean thickness. The assembly of cationic lipid/CMC layer/polymeric particle was stable only well above charge neutralization of the polyelectrolyte by the cationic lipid, at relatively large lipid concentrations (at and above 1 mM DODAB) with charge neutralization leading to extensive particle aggregation.  相似文献   

7.
As part of our continuous studies involving the prospection of natural products from Brazilian flora aiming at the discovery of prototypes for the development of new antiparasitic drugs, the present study describes the isolation of two natural acetylene acetogenins, (2S,3R,4R)-3-hydroxy-4-methyl-2-(n-eicos-11′-yn-19′-enyl)butanolide (1) and (2S,3R,4R)-3-hydroxy-4-methyl-2-(n-eicos-11′-ynyl)butanolide (2), from the seeds of Porcelia macrocarpa (Warm.) R.E. Fries (Annonaceae). Using an ex-vivo assay, compound 1 showed an IC50 value of 29.9 μM against the intracellular amastigote forms of Leishmania (L.) infantum, whereas compound 2 was inactive. These results suggested that the terminal double bond plays an important role in the activity. This effect was also observed for the semisynthetic acetylated (1a and 2a) and eliminated (1b and 2b) derivatives, since only compounds containing a double bond at C-19 displayed activity, resulting in IC50 values of 43.3 μM (1a) and 23.1 μM (1b). In order to evaluate the effect of the triple bond in the antileishmanial potential, the mixture of compounds 1 + 2 was subjected to catalytic hydrogenation to afford a compound 3 containing a saturated side chain. The antiparasitic assays performed with compound 3, acetylated (3a), and eliminated (3b) derivatives confirmed the lack of activity. Furthermore, an in-silico study using the SwissADME online platform was performed to bioactive compounds 1, 1a, and 1b in order to investigate their physicochemical parameters, pharmacokinetics, and drug-likeness. Despite the reduced effect against amastigote forms of the parasite to the purified compounds, different mixtures of compounds 1 + 2, 1a + 2a, and 1b + 2b were prepared and exhibited IC50 values ranging from 7.9 to 38.4 μM, with no toxicity for NCTC mammalian cells (CC50 > 200 μM). Selectivity indexes to these mixtures ranged from >5.2 to >25.3. The obtained results indicate that seeds of Porcelia macrocarpa are a promising source of interesting prototypes for further modifications aiming at the discovery of new antileishmanial drugs.  相似文献   

8.
9.
Leishmaniasis and schistosomiasis are neglected tropical diseases (NTDs) infecting the world’s poorest populations. Effectiveness of the current antileishmanial and antischistosomal therapies are significantly declining, which calls for an urgent need of new effective and safe drugs. In Ethiopia fresh leaves of Ranunculus multifidus Forsk. are traditionally used for the treatment of various ailments including leishmaniasis and eradication of intestinal worms. In the current study, anemonin isolated from the fresh leaves of R. multifidus was assessed for its in vitro antileishmanial and antischistosomal activities. Anemonin was isolated from the hydro-distilled extract of the leaves of R. multifidus. Antileishmanial activity was assessed on clinical isolates of the promastigote and amastigote forms of Leishmania aethiopica and L. donovani clinical isolates. Resazurin reduction assay was used to determine antipromastigote activity, while macrophages were employed for antiamastigote and cytotoxicity assays. Antischistosomal assays were performed against adult Schistosoma mansoni and newly transformed schistosomules (NTS). Anemonin displayed significant antileishmanial activity with IC50 values of 1.33 nM and 1.58 nM against promastigotes and 1.24 nM and 1.91 nM against amastigotes of L. aethiopica and L. donovani, respectively. It also showed moderate activity against adult S. mansoni and NTS (49% activity against adult S. mansoni at 10 µM and 41% activity against NTS at 1 µM). The results obtained in this investigation indicate that anemonin has the potential to be used as a template for designing novel antileishmanial and antischistosomal pharmacophores.  相似文献   

10.
Caffeic acid and related natural compounds were previously described as Leishmania amazonensis arginase (L-ARG) inhibitors, and against the whole parasite in vitro. In this study, we tested cinnamides that were previously synthesized to target human arginase. The compound caffeic acid phenethyl amide (CAPA), a weak inhibitor of human arginase (IC50 = 60.3 ± 7.8 μM) was found to have 9-fold more potency against L-ARG (IC50 = 6.9 ± 0.7 μM). The other compounds that did not inhibit human arginase were characterized as L-ARG, showing an IC50 between 1.3–17.8 μM, and where the most active was compound 15 (IC50 = 1.3 ± 0.1 μM). All compounds were also tested against L. amazonensis promastigotes, and only the compound CAPA showed an inhibitory activity (IC50 = 80 μM). In addition, in an attempt to gain an insight into the mechanism of competitive L-ARG inhibitors, and their selectivity over mammalian enzymes, we performed an extensive computational investigation, to provide the basis for the selective inhibition of L-ARG for this series of compounds. In conclusion, our results indicated that the compounds based on cinnamoyl or 3,4-hydroxy cinnamoyl moiety could be a promising starting point for the design of potential antileishmanial drugs based on selective L-ARG inhibitors.  相似文献   

11.
Trichomoniasis, is the most prevalent non-viral sexually transmitted disease worldwide. Although metronidazole (MDZ) is the recommended treatment, several strains of the parasite are resistant to MDZ, and new treatments are required. Curcumin (CUR) is a polyphenol with anti-inflammatory, antioxidant and antiparasitic properties. In this study, we evaluated the effects of CUR on two biochemical targets: on proteolytic activity and hydrogenosomal metabolism in Trichomonas vaginalis. We also investigated the role of CUR on pro-inflammatory responses induced in RAW 264.7 phagocytic cells by parasite proteinases on pro-inflammatory mediators such as the nitric oxide (NO), tumor necrosis factor α (TNFα), interleukin-1beta (IL-1β), chaperone heat shock protein 70 (Hsp70) and glucocorticoid receptor (mGR). CUR inhibited the growth of T. vaginalis trophozoites, with an IC50 value between 117 ± 7 μM and 173 ± 15 μM, depending on the culture phase. CUR increased pyruvate:ferredoxin oxidoreductase (PfoD), hydrogenosomal enzyme expression and inhibited the proteolytic activity of parasite proteinases. CUR also inhibited NO production and decreased the expression of pro-inflammatory mediators in macrophages. The findings demonstrate the potential usefulness of CUR as an antiparasitic and anti-inflammatory treatment for trichomoniasis. It could be used to control the disease and mitigate the associated immunopathogenic effects.  相似文献   

12.
The cell wall of Mycobacterium tuberculosis (Mtb) has a unique structural organisation, comprising a high lipid content mixed with polysaccharides. This makes cell wall a formidable barrier impermeable to hydrophilic agents. In addition, during host infection, Mtb resides in macrophages within avascular necrotic granulomas and cavities, which shield the bacterium from the action of most antibiotics. To overcome these protective barriers, a new class of anti-TB agents exhibiting lipophilic character have been recommended by various reports in literature. Herein, a series of lipophilic heterocyclic quinolone compounds was synthesised and evaluated in vitro against pMSp12::GFP strain of Mtb, two protozoan parasites (Plasmodium falciparum and Trypanosoma brucei brucei) and against ESKAPE pathogens. The resultant compounds exhibited varied anti-Mtb activity with MIC90 values in the range of 0.24–31 µM. Cross-screening against P. falciparum and T.b. brucei, identified several compounds with antiprotozoal activities in the range of 0.4–20 µM. Compounds were generally inactive against ESKAPE pathogens, with only compounds 8c, 8g and 13 exhibiting moderate to poor activity against S. aureus and A. baumannii.  相似文献   

13.
Chagas disease, a chronic and silent disease caused by Trypanosoma cruzi, is currently a global public health problem. The treatment of this neglected disease relies on benznidazole and nifurtimox, two nitroheterocyclic drugs that show limited efficacy and severe side effects. The failure of potential drug candidates in Chagas disease clinical trials highlighted the urgent need to identify new effective chemical entities and more predictive tools to improve translational success in the drug development pipeline. In this study, we designed a small library of pyrazole derivatives (44 analogs) based on a hit compound, previously identified as a T. cruzi cysteine protease inhibitor. The in vitro phenotypic screening revealed compounds 3g, 3j, and 3m as promising candidates, with IC50 values of 6.09 ± 0.52, 2.75 ± 0.62, and 3.58 ± 0.25 µM, respectively, against intracellular amastigotes. All pyrazole derivatives have good oral bioavailability prediction. The structure–activity relationship (SAR) analysis revealed increased potency of 1-aryl-1H-pyrazole-imidazoline derivatives with the Br, Cl, and methyl substituents in the para-position. The 3m compound stands out for its trypanocidal efficacy in 3D microtissue, which mimics tissue microarchitecture and physiology, and abolishment of parasite recrudescence in vitro. Our findings encourage the progression of the promising candidate for preclinical in vivo studies.  相似文献   

14.
The almiramide N-methylated lipopeptides exhibit promising activity against trypanosomatid parasites. A structure–activity relationship study has been performed to examine the influences of N-methylation and conformation on activity against various strains of leishmaniasis protozoan and on cytotoxicity. The synthesis and biological analysis of twenty-five analogs demonstrated that derivatives with a single methyl group on either the first or fifth residue amide nitrogen exhibited greater activity than the permethylated peptides and relatively high potency against resistant strains. Replacement of amino amide residues in the peptide, by turn inducing α amino γ lactam (Agl) and N-aminoimidazalone (Nai) counterparts, reduced typically anti-parasitic activity; however, peptide amides possessing Agl residues at the second residue retained significant potency in the unmethylated and permethylated series. Systematic study of the effects of methylation and turn geometry on anti-parasitic activity indicated the relevance of an extended conformer about the central residues, and conformational mobility by tertiary amide isomerization and turn geometry at the extremities of the active peptides.  相似文献   

15.
Psammosilene tunicoides is a unique perennial medicinal plant species native to the Southwestern regions of China. Its wild population is rare and endangered due to over-excessive collection and extended growth (4–5 years). This research shows that H+-ATPase activity was a key factor for oxalate-inducing programmed cell death (PCD) of P. tunicoides suspension cells. Oxalic acid (OA) is an effective abiotic elicitor that enhances a plant cell’s resistance to environmental stress. However, the role of OA in this process remains to be mechanistically unveiled. The present study evaluated the role of OA-induced cell death using an inverted fluorescence microscope after staining with Evans blue, FDA, PI, and Rd123. OA-stimulated changes in K+ and Ca2+ trans-membrane flows using a patch-clamp method, together with OA modulation of H+-ATPase activity, were further examined. OA treatment increased cell death rate in a dosage-and duration-dependent manner. OA significantly decreased the mitochondria activity and damaged its electron transport chain. The OA treatment also decreased intracellular pH, while the FC increased the pH value. Simultaneously, NH4Cl caused intracellular acidification. The OA treatment independently resulted in 90% and the FC led to 25% cell death rates. Consistently, the combined treatments caused a 31% cell death rate. Furthermore, treatment with EGTA caused a similar change in intracellular pH value to the La3+ and OA application. Combined results suggest that OA-caused cell death could be attributed to intracellular acidification and the involvement of OA in the influx of extracellular Ca2+, thereby leading to membrane depolarization. Here we explore the resistance mechanism of P. tunicoides cells against various stresses endowed by OA treatment.  相似文献   

16.
The protozoan diseases Human African Trypanosomiasis (HAT), Chagas disease (CD), and leishmaniases span worldwide and therefore their impact is a universal concern. The present regimen against kinetoplastid protozoan infections is poor and insufficient. Target-based design expands the horizon of drug design and development and offers novel chemical entities and potential drug candidates to the therapeutic arsenal against the aforementioned neglected diseases. In this review, we report the most promising targets of the main kinetoplastid parasites, as well as their corresponding inhibitors. This overview is part of the Special Issue, entitled “Advances of Medicinal Chemistry against Kinetoplastid Protozoa (Trypanosoma brucei, Trypanosoma cruzi and Leishmania spp.) Infections: Drug Design, Synthesis and Pharmacology”.  相似文献   

17.
Plasmodium falciparum is the causative agent of malaria, a deadly infectious disease for which treatments are scarce and drug-resistant parasites are now increasingly found. A comprehensive method of identifying and quantifying metabolites of this intracellular parasite could expand the arsenal of tools to understand its biology, and be used to develop new treatments against the disease. Here, we present two methods based on liquid chromatography tandem mass spectrometry for reliable measurement of water-soluble metabolites involved in phospholipid biosynthesis, as well as several other metabolites that reflect the metabolic status of the parasite including amino acids, carboxylic acids, energy-related carbohydrates, and nucleotides. A total of 35 compounds was quantified. In the first method, polar compounds were retained by hydrophilic interaction chromatography (amino column) and detected in negative mode using succinic acid-13C4 and fluorovaline as internal standards. In the second method, separations were carried out using reverse phase (C18) ion-pair liquid chromatography, with heptafluorobutyric acid as a volatile ion pairing reagent in positive detection mode, using d9-choline and 4-aminobutanol as internal standards. Standard curves were performed in P. falciparum-infected and uninfected red blood cells using standard addition method (r2 > 0.99). The intra- and inter-day accuracy and precision as well as the extraction recovery of each compound were determined. The lower limit of quantitation varied from 50 pmol to 100 fmol/3 × 107 cells. These methods were validated and successfully applied to determine intracellular concentrations of metabolites from uninfected host RBCs and isolated Plasmodium parasites.  相似文献   

18.
Background: Currently, only two drugs are recommended for treatment of infection with Trypanosoma cruzi, the etiologic agent of Chagas’ disease. These compounds kill the trypomastigote forms of the parasite circulating in the bloodstream, but are relatively ineffective against the intracellular stage of the parasite life cycle. Neither drug is approved by the FDA for use in the US. The hypoxanthine phosphoribosyltransferase (HPRT) from T. cruzi is a possible new target for antiparasite chemotherapy. The crystal structure of the HPRT in a conformation approximating the transition state reveals a closed active site that provides a well-defined target for computational structure-based drug discovery.Results: A flexible ligand docking program incorporating a desolvation correction was used to screen the Available Chemicals Directory for inhibitors targeted to the closed conformation of the trypanosomal HPRT. Of 22 potential inhibitors identified, acquired and tested, 16 yielded Ki’s between 0.5 and 17 μM versus the substrate phosphoribosylpyrophosphate. Surprisingly, three of eight compounds tested were effective in inhibiting the growth of parasites in infected mammalian cells.Conclusions: This structure-based docking method provided a remarkably efficient path for the identification of inhibitors targeting the closed conformation of the trypanosomal HPRT. The inhibition constants of the lead inhibitors identified are unusually favorable, and the trypanostatic activity of three of the compounds in cell culture suggests that they may provide useful starting points for drug design for the treatment of Chagas’ disease.  相似文献   

19.
Intermolecular associations between a cationic lipid and two model polymers were evaluated from preparation and characterization of hybrid thin films cast on silicon wafers. The novel materials were prepared by spin-coating of a chloroformic solution of lipid and polymer on silicon wafer. Polymers tested for miscibility with the cationic lipid dioctadecyldimethylammonium bromide (DODAB) were polystyrene (PS) and poly(methyl methacrylate) (PMMA). The films thus obtained were characterized by ellipsometry, wettability, optical and atomic force microscopy, Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and activity against Escherichia coli. Whereas intermolecular ion-dipole interactions were available for the PMMA-DODAB interacting pair producing smooth PMMA-DODAB films, the absence of such interactions for PS-DODAB films caused lipid segregation, poor film stability (detachment from the silicon wafer) and large rugosity. In addition, the well-established but still remarkable antimicrobial DODAB properties were transferred to the novel hybrid PMMA/DODAB coating, which is demonstrated to be highly effective against E. coli.  相似文献   

20.
The natural compound ravenelin was isolated from the biomass extracts of Exserohilum rostratum fungus, and its antimicrobial, antiplasmodial, and trypanocidal activities were evaluated. Ravenelin was isolated by column chromatography and HPLC and identified by NMR and MS. The susceptibility of Gram-positive and Gram-negative bacteria strains to ravenelin was determined by microbroth dilution assay. Cytotoxicity was evaluated in hepatocarcinoma cells (HepG2) and BALB/c peritoneal macrophages by using MTT. SYBR Green I-based assay was used in the asexual stages of Plasmodium falciparum. Trypanocidal activity was tested against the epimastigote and intracellular amastigote forms of Trypanosoma cruzi. Ravenelin was active against Gram-positive bacteria strains, with emphasis on Bacillus subtilis (MIC value of 7.5 µM). Ravenelin’s antiparasitic activities were assessed against both the epimastigote (IC50 value of 5 ± 1 µM) and the intracellular amastigote forms of T. cruzi (IC50 value of 9 ± 2 µM), as well as against P. falciparum (IC50 value of 3.4 ± 0.4 µM). Ravenelin showed low cytotoxic effects on both HepG2 (CC50 > 50 µM) and peritoneal macrophage (CC50 = 185 ± 1 µM) cells with attractive selectivity for the parasites (SI values > 15). These findings indicate that ravenelin is a natural compound with both antibacterial and antiparasitic activities, and considerable selectivity indexes. Therefore, ravenelin is an attractive candidate for hit-to-lead development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号