首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plant-derived products may represent promising strategies in the treatment of Neglected Tropical Diseases (NTDs). From this perspective, it is observed that the Amazon phytogeographic region contains the tribe Canarieae of the Burseraceae family, composed of trees and shrubs supplied with resin channels. Its uses in folk medicine are related to aromatic properties, which have numerous medicinal applications and are present in reports from traditional peoples, sometimes as the only therapeutic resource. Despite its economic and pharmacological importance in the region, and although the family is distributed in all tropical and subtropical regions of the world, most of the scientific information available is limited to Asian and African species. Therefore, the present work aimed to review the secondary metabolites with possible pharmacological potential of the species Trattinnickia rhoifolia Willd, popularly known as “Breu sucuruba”. To this end, an identification key was created for chemical compounds with greater occurrence in the literature of the genus Trattinnickia. The most evident therapeutic activities in the consulted studies were antimicrobial, antioxidant, anti-inflammatory, antiviral, antifungal, anesthetic and antiparasitic. An expressive chemical and pharmacological relevance of the species was identified, although its potential is insufficiently explored, mainly in the face of the NTDs present in the Brazilian Amazon.  相似文献   

2.
Actinomycetes are regarded as important sources for the generation of various bioactive secondary metabolites with rich chemical and bioactive diversities. Amycolatopsis falls under the rare actinomycete genus with the potential to produce antibiotics. In this review, all literatures were searched in the Web of Science, Google Scholar and PubMed up to March 2021. The keywords used in the search strategy were “Amycolatopsis”, “secondary metabolite”, “new or novel compound”, “bioactivity”, “biosynthetic pathway” and “derivatives”. The objective in this review is to summarize the chemical structures and biological activities of secondary metabolites from the genus Amycolatopsis. A total of 159 compounds derived from 8 known and 18 unidentified species are summarized in this paper. These secondary metabolites are mainly categorized into polyphenols, linear polyketides, macrolides, macrolactams, thiazolyl peptides, cyclic peptides, glycopeptides, amide and amino derivatives, glycoside derivatives, enediyne derivatives and sesquiterpenes. Meanwhile, they mainly showed unique antimicrobial, anti-cancer, antioxidant, anti-hyperglycemic, and enzyme inhibition activities. In addition, the biosynthetic pathways of several potent bioactive compounds and derivatives are included and the prospect of the chemical substances obtained from Amycolatopsis is also discussed to provide ideas for their implementation in the field of therapeutics and drug discovery.  相似文献   

3.
Dendrobium is the second biggest genus in the Orchidaceae family, and many of them have been utilized as a traditional Chinese medicine (TCM) for thousands of years in China. In the last few decades, constituents with great chemical diversity were isolated from Dendrobium, and a wide range of biological activities were detected, either for crude extracts or for pure compounds. Stilbene compound is one of the primary active constituents in the genus Dendrobium. At present, 267 stilbene compounds with clarified molecular structures have been extracted and isolated from 52 species of Dendrobium, including 124 phenanthrenes and 143 bibenzyls. At the same time, activity studies have indicated that 157 compounds have pharmaceutical activity. Among them, most of the compounds showed antitumor activity, followed by antioxidant, anti-inflammatory and anti-α-glucosidase inhibitory activities. Additionally, 54 compounds have multiple pharmacological activities, such as confusarin (14), 2,4,7-trihydroxy-9,10-dihydro-phenanthrene (43), moscatilin (148), gigantol (150) and batatasin III (151). This review summarizes current knowledge about the chemical composition of stilbene, bioactivities and pharmacologic effects in 52 species of Dendrobium. We also expect to provide a reference for further research, development and utilization of stilbene constituents in the Dendrobium genus.  相似文献   

4.
Species within the genus Rhoicissus (Vitaceae) are commonly used in South African traditional medicine. The current review discusses the occurrence, distribution, traditional uses, phytochemistry, and pharmacological properties of Rhoicissus species covering the period 1981–2020. The data reported were systematically collected, read, and analysed from scientific electronic databases including Scopus, Scifinder, Pubmed, and Google Scholar. Reported evidence indicates that species in this genus are used for the treatment of gastrointestinal complaints, sexually transmitted infections (STIs), and infertility, as well as to tone the uterus during pregnancy and to facilitate delivery. Pharmacological studies have further shown that members of the Rhoicissus genus display antidiabetic, uterotonic, ascaricidal, hepatoprotective, antioxidant, antimicrobial, anticancer, and anti-inflammatory properties. They are linked to the presence of bioactive compounds isolated from the genus. Hence, Rhoicissus species can potentially be an alternative therapeutic strategy to treat diseases and develop safer and more potent drugs to combat diseases. Plant species of this genus have valuable medicinal benefits due to their significant pharmacological potential. However, scientific investigation and information of the therapeutic potential of Rhoicissus remain limited as most of the species in the genus have not been fully exploited. Therefore, there is a need for further investigations to exploit the therapeutic potential of the genus Rhoicissus. Future studies should evaluate the phytochemical, pharmacological, and toxicological activities, as well as the mode of action, of Rhoicissus crude extracts and secondary compounds isolated from the species.  相似文献   

5.
Species of the genus Miconia are used in traditional medicine for the treatment of diseases, such as pain, throat infections, fever, and cold, and they used as depuratives, diuretics, and sedatives. This work reviewed studies carried out with Miconia species, highlighting its ethnomedicinal uses and pharmacological and phytochemical potential. This information was collected in the main platforms of scientific research (PubMed, Scopus, and Web of Science). Our findings show that some of the traditional uses of Miconia are corroborated by biological and/or pharmacological assays, which demonstrated, among other properties, anti-inflammatory, analgesic, antimutagenic, antiparasitic, antioxidant, cytotoxic, and antimicrobial activities. A total of 148 chemical compounds were identified in Miconia species, with phenolic compounds being the main constituents found in the species of this genus. Such phytochemical investigations have demonstrated the potential of species belonging to this genus as a source of bioactive substances, thus reinforcing their medicinal and pharmacological importance.  相似文献   

6.
Peperomia pellucida is a species known in the Amazon as “erva-de-jabuti” that has been used in several therapeutic applications based on folk medicine. Herein, we describe the classes, subclasses, and the main compounds of the leaves, stems, and roots from P. pellucida by ultra-high performance liquid chromatography coupled to high-resolution mass spectrometry associated with molecular networks, mirror plot on the GNPS library, and machine learning. These data show compounds that were annotated for the first time in the Peperomia genus, such as 2′,4′,5′-trihydroxybutyrophenonevelutin, dehydroretrofractamide C, and retrofractamide B.  相似文献   

7.
Hottonia palustris L. is from the genus Hottonia (Primulaceae), and the understanding of its phytochemical and pharmacological properties is limited. In this study, the use of chromatographic techniques led to the isolation of a further eleven compounds, including three new flavonoids: 2′,5-dihydroxyflavone 2′-O-β-glucopyranoside, 5,6-dihydroxyflavone 6-O-(6”-O-glucopyranosyl)-β-glucopyranoside (hottonioside A), and 4′,5,7-trihydroxyflavone 7-O-(2”-O-β-glucuronide)-β-glucopyranoside. Their structures were determined using extensive 1D and 2D NMR data and mass spectrometry (HRMS). The qualitative assessment of the chemical composition of the investigated extracts and fractions was performed using the LC-HRMS technique. Furthermore, the antioxidant potential of extracts, fractions, and compounds and their ability to inhibit acetylcholinesterase were also evaluated. Thus, we may conclude that the observed biological effects are the result of the presence of many biologically active compounds, of which dibenzoylmethane is the most active. Therefore, H. palustris is a source of substances with desirable properties in the prevention and treatment of neurodegenerative diseases.  相似文献   

8.
Polygonum capitatum, known as “Tou Hua Liao” (Chinese name), is a crucial source of Hmong medicinal plants that has benefited human health for a long time. This folk-medicinal plant is widely distributed in the south-west of China for the treatment of various urologic disorders including urinary tract infections, pyelonephritis, and urinary calculus. The purpose of this paper was to provide a systematic and comprehensive overview of the traditional usages, botany, phytochemistry, pharmacology, pharmacokinetics and clinical applications of this flora. Up until the end of 2022, at least 91 compounds had been reported from P. capitatum, mainly covering the classes of flavonoids, lignanoids, phenols and other components. The compounds and extracts isolated from P. capitatum exhibit a wide range of pharmacological activities, such as anti-inflammatory, antioxidant, antimicrobial, anticancer, analgesic, hypothermic, diuretic and other pharmacological effects. Qualitative and quantitative chemical analyses were also covered. Furthermore, the possible development trends and perspectives for future research on this medicinal plant were also discussed.  相似文献   

9.
Since the outbreak of the COVID-19 pandemic, traditional Chinese medicine has played an important role in the treatment process. Furthermore, the discovery of artemisinin in Artemisia annua has reduced the incidence of malaria all over the world. Therefore, it is becoming urgent and important to establish a novel method of conducting systematic research on Chinese herbal medicine, improving the medicinal utilization value of traditional Chinese medicine and bringing great benefits to human health all over the world. Fructus Malvae, a kind of Chinese herbal medicine which has been recorded in the “Chinese Pharmacopoeia” (2020 edition), refers to the dry, ripe fruits of Malva verticillata L. Recently, some studies have shown that Fructus Malvae exhibits some special pharmacological activities; for example, it has diuretic, anti-diabetes, antioxidant and anti-tumor properties, and it alleviates hair loss. Furthermore, according to the reports, the active ingredients separated and identified from Fructus Malvae contain some very novel compounds such as nortangeretin-8-O-β-d-glucuronopyranoside and 1-O-(6-deoxy-6-sulfo)-glucopyranosyl-2-O-linolenoyl-3-O-palmitoyl glyceride, which could be screened as important candidate compounds for diabetes- or tumor-treatment drugs, respectively. Therefore, in this research, we take Fructus Malvae as an example and systematically summarize the chemical constituents and pharmacological activity research progress of it. This review will be helpful in promoting the development and application of Fructus Malvae and will also provide an example for other investigations of traditional Chinese medicine.  相似文献   

10.
Ethnopharmacological relevance: The genus Polygonatum Tourn, ex Mill. contains numerous chemical components, such as steroidal saponins, polysaccharides, flavonoids, alkaloids, and others, it possesses diverse pharmacological activities, such as anti-aging, anti-tumor, immunological regulation, as well as blood glucose management and fat reducing properties. Aim of the review: This study reviews the current state of research on the systematic categorization, chemical composition, pharmacological effects, and processing changes of the plants belonging to the genus Polygonatum, to provide a theoretical foundation for their scientific development and rational application. Materials and methods: The information was obtained by searching the scientific literature published between 1977 and 2022 on online databases (including PubMed, CNKI, SciFinder, and Web of Science) and other sources (such as the Chinese Pharmacopoeia 2020 edition, and Chinese herbal books). Results: The genus Polygonatum contains 79 species, and 233 bioactive chemical compounds were identified in them. The abundance of pharmacological activities, such as antioxidant activities, anti-fatigue activities, anti-inflammatory activities, etc., were revealed for the representatives of this genus. In addition, there are numerous processing methods, and many chemical constituents and pharmacological activities change after the unappropriated processing. Conclusions: This review summarizes the taxonomy classification, chemical composition, pharmacological effects, and processing of the plants belonging to the genus Polygonatum, providing references and research tendencies for plant-based drug development and further clinical applications.  相似文献   

11.
Salvia miltiorrhiza Bge is a medicinal plant (Chinese name “Danshen”) widely used for the treatment of hyperglycemia in traditional Chinese medicine. Protein tyrosine phosphatase 1B (PTP1B) has been recognized as a potential target for insulin sensitizing for the treatment of diabetes. In this work, PTP1B was displayed at the surface of E. coli cells (EC-PTP1B) to be used as a bait for fishing of the enzyme’s inhibitors present in the aqueous extract of S. miltiorrhiza. Salvianolic acid B, a polyphenolic compound, was fished out by EC-PTP1B, which was found to inhibit PTP1B with an IC50 value of 23.35 µM. The inhibitory mechanism of salvianolic acid B was further investigated by enzyme kinetic experiments and molecular docking, indicating salvianolic acid B was a non-competitive inhibitor for PTP1B (with Ki and Kis values of 31.71 µM and 20.08 µM, respectively) and its binding energy was −7.89 kcal/mol. It is interesting that in the comparative work using a traditional ligand fishing bait of PTP1B-immobilized magnetic nanoparticles (MNPs-PTP1B), no ligands were extracted at all. This study not only discovered a new PTP1B inhibitor from S. miltiorrhiza which is significant to understand the chemical basis for the hypoglycemic activity of this plant, but also indicated the effectiveness of cell display-based ligand fishing in screening of active compounds from complex herbal extracts.  相似文献   

12.
Phytophthora is a genus of microorganisms that cause devastating dieback and root-rot diseases in thousands of plant hosts worldwide. The economic impact of Phytophthora diseases on crops and native ecosystems is estimated to be billions of dollars per annum. These invasive pathogens are extremely difficult to control using existing chemical means, and the effectiveness of the few treatments available is being jeopardized by increasing rates of resistance. There is an urgent need to identify new chemical treatments that are effective against Phytophthora diseases. Natural products have long been regarded as “Nature’s medicine chest”, providing invaluable leads for developing front-line drugs and agrochemical agents. Here, we have screened a natural product-inspired library of 328 chemicals against two key Phytophthora species: Phytophthora cinnamomi and Phytophthora agathidicida. The library was initially screened for inhibition of zoospore germination. From these screens, we identified twenty-one hits that inhibited germination of one or both species. These hits were further tested in mycelial growth inhibition studies to determine their half-maximal inhibitory concentrations (IC50s). Four compounds had IC50 values of approximately 10 µM or less, and our best hit had IC50s of approximately 3 µM against both Phytophthora species tested. Overall, these hits may serve as promising leads for the development of new anti-Phytophthora agrochemicals  相似文献   

13.
Thuja occidentalis L. (Cupressaceae) has its origins in Eastern North America and is cultivated in Europe and Brazil as an ornamental tree, being known as the “tree of life” or “white cedar”. In traditional medicine, it is commonly used to treat liver diseases, bullous bronchitis, psoriasis, enuresis, amenorrhea, cystitis, uterine carcinomas, diarrhea, and rheumatism. The chemical constituents of T. occidentalis have been of research interest for decades, due to their contents of essential oil, coumarins, flavonoids, tannins, and proanthocyanidines. Pharmacology includes antioxidant, anti-inflammatory, antibacterial, antifungal, anticancer, antiviral, protective activity of the gastrointestinal tract, radioprotection, antipyretic, and lipid metabolism regulatory activity. Therefore, the present review represents the synthesis of all the relevant information for T. occidentalis, its ethnobotany, phytochemistry, and a thorough analysis of their pharmacological activities, in order to promote all the biological activities shown so far, rather than the antitumor activity that has promoted it as a medicinal species.  相似文献   

14.
15.
Cinnamomum verum (Lauraceae), also known as “true cinnamon” or “Ceylon cinnamon” has been widely used in traditional folk medicine and cuisine for a long time. The systematics of C. verum presents some difficulties due to genetic variation and morphological similarity between other Cinnamomum species. The present work aimed to find chemical and molecular markers of C. verum samples from the Amazon region of Brazil. The leaf EOs and the genetic material (DNA) were extracted from samples cultivated and commercial samples. The chemical composition of the essential oils from samples of C. verum cultivated (Cve1-Cve5) and commercial (Cve6-c-Cv9-c) was grouped by multivariate statistical analysis of Principal Component Analysis (PCA). The major compounds were rich in benzenoids and phenylpropanoids, such as eugenol (0.7–91.0%), benzyl benzoate (0.28–76.51%), (E)-cinnamyl acetate (0.36–32.1%), and (E)-cinnamaldehyde (1.0–19.73%). DNA barcodes were developed for phylogenetic analysis using the chloroplastic regions of the matK and rbcL genes, and psbA-trnH intergenic spacer. The psbA-trnH sequences provided greater diversity of nucleotides, and matK confirmed the identity of C. verum. The combination of DNA barcode and volatile profile was found to be an important tool for the discrimination of C. verum varieties and to examine the authenticity of industrial sources.  相似文献   

16.
Cystoseira (Sargassaceae) is a genus of marine brown algae composed of about 40 species, which is distributed along the Eastern Atlantic and Mediterranean coasts. The biological potential of the Cystoseira genus has been investigated and several activities have been reported. Chemically, this genus contains a wide variety of secondary metabolites, such as terpenoids, steroids, phlorotannins and phenolic compounds. Additionally, other chemical components as, for instance, carbohydrates, triacylglycerols/fatty acids, pigments as well as vitamins have been identified in the studied species. Some of the isolated compounds were associated with the reported pharmacological properties, as for example antioxidant, anti-inflammatory, cytotoxicity, anticancer, cholinesterase inhibition, anti-diabetic, activities but also antibacterial, antifungal and anti-parasitic activities. In this review, we provide a comprehensive overview of the compounds isolated and identified after 1995 from the different species of Cystoseira, compiling more than 200 compounds isolated, together with their therapeutic potential.  相似文献   

17.
Bergenia species (Saxifragaceae) are important sources of herbal medicines in Asia, mainly in Russia. Various plant parts are valued for their antibacterial, anti-inflammatory, antioxidant sand adaptogenic effect, and used for the dissolution of kidney and bladder stones. In this study a rapid reversed phase liquid chromatography (RP-HPLC) method has been developed for rapid screening and identifying of the main active components in leaf samples of Bergenia accessions. The main goal of this study was to develop an efficient method for the simultaneous identification and detection of arbutin, bergenin and gallic acid from Bergenia leaf samples, which were extracted with a methanolic solvent mixture [methanol:water = 1:1 (v/v)]. Chromatographic separations were performed on a reversed phase Luna C18(2)-HST HPLC column. This chromatographic system provided increased speed and efficiency for separations, without the need for ultra-high pressures. Reversed phase HPLC coupled with diode array detector method was used for the analysis. The method was validated using ICH guidelines. The level of gallic acid was significantly higher in Bergenia crassifolia samples compared to Bergenia cordifolia. However, the samples of the two Bergenia species did not differ substantially regarding the concentrations of arbutin and bergenin. The novel method proved to be fast and allowed sufficient separation and quantification of arbutin, bergenin and gallic acid, the most important bioactive compounds of Bergenia leaves; thus facilitating rapid screening and quality assessment of Bergenia samples of various botanical and geographical origins.  相似文献   

18.
The search for new bioactive compounds from plant sources has been and continues to be one of the most important fields of research in drug discovery. However, Natural Products research has continuously evolved, and more and more has gained a multidisciplinary character. Despite new developments of methodologies and concepts, one intriguing aspect still persists, i.e., different species belonging to the same genus can produce different secondary metabolites, whereas taxonomically different genera can produce the same compounds. The genus Salvia L. (Family Lamiaceae) comprises myriad distinct medicinal herbs used in traditional medicine worldwide that show different pharmacological activities due to the presence of a variety of interesting specialized metabolites, including mono-, sesqui-, di-, sester-, tri-, tetra-, and higher terpenoids as well as phenylpropanoids, phenolic acid derivatives, lignans, flavonoids, and alkaloids. We herein summarize the research progress on some uncommon terpenoids, isolated from members of the genus Salvia, which are well recognized for their potential pharmacological activities. This review also provides a current knowledge on the biosynthesis and occurrence of some interesting phytochemicals from Salvia species, viz. C23-terpenoids, sesterterpenoids (C25), dammarane triterpenoids (C30), and uncommon triterpenoids (C20+C10). The study was carried out by searching various scientific databases, including Elsevier, ACS publications, Taylor and Francis, Wiley Online Library, MDPI, Springer, Thieme, and ProQuest. Therefore, 106 uncommon terpenoids were identified and summarized. Some of these compounds possessed a variety of pharmacological properties, such as antibacterial, antiviral, antiparasitic, cytotoxic and tubulin tyrosine ligase inhibitory activities. Due to the lack of pharmacological information for the presented compounds gathered from previous studies, biological investigation of these compounds should be reinvestigated.  相似文献   

19.
This paper is intended to review advances in the botanical, traditional uses, phytochemical, pharmacological and development and utilization studies of the genus Chloranthus. Chloranthus, a genus of the family Chloranthaceae, which is mainly distributed in the temperate and tropical regions of Asia, has been used as a folk remedy for swollen boils, snake bites and bruises. Up to now, 418 compounds have been reported from the genus Chloranthus, including 383 terpenoids, 4 coumarins, 6 lignans, 2 simple phenylpropanoids, 4 flavonoids, 6 amides, 5 organic acids and some other types of compounds. Among them, the main chemical constituents are sesquiterpenes and their diterpenoids. Modern pharmacological studies have shown that most of the Chloranthus plants possessed anti-cancer, anti-inflammatory, antibacterial, antiviral, and antimalarial activities. As one of the most important genera in China, Chloranthus should be paid further attention to gathering information about the pharmacological mechanism and value active compounds. This paper summarized the phytochemistry, pharmacology, and uses of genus Chloranthus in order to lay a foundation and provide reference for the follow-up research and wide application of the genus.  相似文献   

20.
The roots of Melastoma malabathricum subsp. normale (D. Don) Karst. Mey have been used in traditional ethnic medicine systems in China to treat inflammation-triggered ailments, such as trauma, toothache, and fever. Therefore, the aim of this study is to screen for compounds with anti-inflammatory activity in the title plant. The extract of M. malabathricum subsp. normale roots was separated using various chromatographic methods, such as silica gel, ODS C18, MCI gel, and Sephadex LH-20 column chromatography, as well as semi-preparative HPLC. One new complex tannin, named whiskey tannin D (1), and an undescribed tetracyclic depsidone derivative, named guanxidone B (2), along with nine known polyphenols (2–10) and three known depsidone derivatives (12–14) were obtained from this plant. The structures of all compounds were elucidated by extensive NMR and CD experiments in conjunction with HR-ESI-MS data. All these compounds were isolated from this plant for the first time. Moreover, compounds 1–4, 8, and 10–14 were obtained for the first time from the genus Melastoma, and compounds 1, 2, and 11–14 have not been reported from the family Melastomataceae. This is the first report of complex tannin and depsidone derivatives from M. malabathricum subsp. normale, indicating their chemotaxonomic significance to this plant. Compounds 1–12 were investigated for their anti-inflammatory activities on the production of the nitric oxide (NO) in lipopolysaccharide (LPS)-stimulated RAW264.7 cells, and compounds 1, 11, and 12 showed anti-inflammatory activities with IC50 values of 6.46 ± 0.23 µM, 8.02 ± 0.35 µM, and 9.82 ± 0.43 µM, respectively. The structure–activity relationship showed that the catechin at glucose C-1 in ellagitannin was the key to its anti-inflammatory activity, while CH3O- at C-16 of aromatic ring A in depsidone derivatives had little effect on its anti-inflammatory activity. The study of structure–activity relationships is helpful to quickly discover new anti-inflammatory drugs. The successful isolation and structure identification of these compounds, especially complex tannin 1, not only provide materials for the screening of anti-inflammatory compounds, but also provide a basis for the study of chemical taxonomy of the genus Melastoma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号