首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Synthetic molecules that modulate and probe biological events are critical tools in chemical biology. Utilizing combinatorial and diversity‐oriented synthetic strategies, access to large numbers of small molecules is becoming more and more feasible, and research groups in this field can take advantage of the power of chemical diversity. Since the majority of early studies were focused on the discovery of compounds that perturb protein functions, diversity‐based approaches are often considered as therapeutic lead discovery tactics. However, the diversity‐oriented approach can also be applied to advance distinct aims, such as target protein identification, or the development of imaging probes and sensors. This review provides a personal perspective of the chemical‐diversity‐based approach and how this principle can be adapted to various chemical biology studies.  相似文献   

2.
In recent years, the world has seen a troubling increase in antibiotic resistance among bacterial pathogens. In order to provide alternative strategies to combat bacterial infections, it is crucial deepen our understanding into the mechanisms that pathogens use to thrive in complex environments. Most bacteria use sophisticated chemical communication systems to sense their population density and coordinate gene expression in a collective manner, a process that is termed “quorum sensing” (QS). The human pathogen Pseudomonas aeruginosa uses several small molecules to regulate QS, and one of them is N-butyryl-l-homoserine lactone (C4-HSL). Using an activity-based protein profiling (ABPP) strategy, we designed biomimetic probes with a photoreactive group and a ‘click’ tag as an analytical handle. Using these probes, we have identified previously uncharacterized proteins that are part of the P. aeruginosa QS network, and we uncovered an additional role for this natural autoinducer in the virulence regulon of P. aeruginosa, through its interaction with PhzB1/2 that results in inhibition of pyocyanin production.

Short-chain reactive probes can be used as tools to shed new light on virulence mechanisms in bacterial pathogens.  相似文献   

3.
化学遗传学是20世纪90年代开始兴起的交叉学科,是利用生物活性小分子与蛋白相互作用研究生物学系统功能的一种方法,是经典遗传学的补充。化学遗传学的历史可以追溯到几百年前。在现代药物靶标的发现上,化学遗传学起着非常重要的作用。  相似文献   

4.

Background  

Discovery of new bioactive molecules that could enter drug discovery programs or that could serve as chemical probes is a very complex and costly endeavor. Structure-based and ligand-based in silico screening approaches are nowadays extensively used to complement experimental screening approaches in order to increase the effectiveness of the process and facilitating the screening of thousands or millions of small molecules against a biomolecular target. Both in silico screening methods require as input a suitable chemical compound collection and most often the 3D structure of the small molecules has to be generated since compounds are usually delivered in 1D SMILES, CANSMILES or in 2D SDF formats.  相似文献   

5.
6.
Aiming for more sustainable chemical production requires an urgent shift towards synthetic approaches designed for waste minimization. In this context the use of azeotropes can be an effective tool for “recycling” and minimizing the large volumes of solvents, especially in aqueous mixtures, used. This review discusses the implementation of different kinds of azeotropic mixtures in relation to the environmental and economic benefits linked to their recovery and re-use. Examples of the use of azeotropes playing a role in the process performance and in the purification steps maximizing yields while minimizing waste. Where possible, the advantages reported have been highlighted by using E-factor calculations. Lastly azeotrope potentiality in waste valorization to afford value-added materials is given.  相似文献   

7.
Many human activities and cellular functions depend upon precise pH values, and pH monitoring is considered a fundamental task. Colorimetric and fluorescence sensors for pH measurements are chemical and biochemical tools able to sense protons and produce a visible signal. These pH sensors are gaining widespread attention as non-destructive tools, visible to the human eye, that are capable of a real-time and in-situ response. Optical “visual” sensors are expanding researchers’ interests in many chemical contexts and are routinely used for biological, environmental, and medical applications. In this review we provide an overview of trending colorimetric, fluorescent, or dual-mode responsive visual pH sensors. These sensors include molecular synthetic organic sensors, metal organic frameworks (MOF), engineered sensing nanomaterials, and bioengineered sensors. We review different typological chemical entities of visual pH sensors, three-dimensional structures, and signaling mechanisms for pH sensing and applications; developed in the past five years. The progression of this review from simple organic molecules to biological macromolecules seeks to benefit beginners and scientists embarking on a project of pH sensing development, who needs background information and a quick update on advances in the field. Lessons learned from these tools will aid pH determination projects and provide new ways of thinking for cell bioimaging or other cutting-edge in vivo applications.  相似文献   

8.
Protein kinases are a large class of enzymes with numerous biological roles and many have been implicated in a vast array of diseases, including cancer and the novel coronavirus infection COVID-19. Thus, the development of chemical probes to selectively target each kinase is of great interest. Inhibition of protein kinases with ATP-competitive inhibitors has historically been the most widely used method. However, due to the highly conserved structures of ATP-sites, the identification of truly selective chemical probes is challenging. In this review, we use the Ser/Thr kinase CK2 as an example to highlight the historical challenges in effective and selective chemical probe development, alongside recent advances in the field and alternative strategies aiming to overcome these problems. The methods utilised for CK2 can be applied to an array of protein kinases to aid in the discovery of chemical probes to further understand each kinase’s biology, with wide-reaching implications for drug development.  相似文献   

9.
Bruton’s tyrosine kinase (BTK) represented, in the past ten years, an important target for the development of new therapeutic agents that could be useful for cancer and autoimmune disorders. To date, five compounds, able to block BTK in an irreversible manner, have been launched in the market, whereas many reversible BTK inhibitors (BTKIs), with reduced side effects that are more useful for long-term administration in autoimmune disorders, are under clinical investigation. Despite the presence in the literature of many articles and reviews, studies on BTK function and BTKIs are of great interest for pharmaceutical companies as well as academia. This review is focused on compounds that have appeared in the literature from 2017 that are able to block BTK in an irreversible or reversible manner; also, new promising tunable irreversible inhibitors, as well as PROTAC molecules, have been reported. This summary could improve the knowledge of the chemical diversity of BTKIs and provide information for future studies, particularly from the medicinal chemistry point of view. Data reported here are collected from different databases (Scifinder, Web of Science, Scopus, Google Scholar, and Pubmed) using “BTK” and “BTK inhibitors” as keywords.  相似文献   

10.
Chemical probe‐based approaches have proven powerful in recent years in the target identification studies of natural products. OSW‐1 is a saponin class of natural products with highly potent and selective cytotoxicity against various cancer cell lines. Understanding its mechanism of action is important for the development of anticancer drugs with potentially novel target pathways. This account reviews recent progress in the development of OSW‐1 derived probes for exploring the mechanism of its action. The key to the probe development is a judicious choice of functionalization sites and a selective functionalization strategy. The types of probes include fluorescent probes for cellular imaging analysis and affinity probes for target identification analysis.  相似文献   

11.
Crocus sativus L. belongs to the Iridaceae family and it is commonly known as saffron. The different cultures together with the geoclimatic characteristics of the territory determine a different chemical composition that characterizes the final product. This is why a complete knowledge of this product is fundamental, from which more than 150 chemical compounds have been extracted from, but only about one third of them have been identified. The chemical composition of saffron has been studied in relation to its efficacy in coping with neurodegenerative retinal diseases. Accordingly, experimental results provide evidence of a strict correlation between chemical composition and neuroprotective capacity. We found that saffron’s ability to cope with retinal neurodegeneration is related to: (1) the presence of specific crocins and (2) the contribution of other saffron components. We summarize previous evidence and provide original data showing that results obtained both “in vivo” and “in vitro” lead to the same conclusion.  相似文献   

12.
Lugana and Verdicchio are two Italian white wines with a Protected Designation of Origin (PDO) label. These two wine types are produced in different regions using the same grape variety. The aim of this work is to investigate the existence of volatile chemical markers that could help to elucidate differences between Lugana and Verdicchio wines both at chemical and sensory levels. Thirteen commercial wine samples were analyzed by Gas Chromatography-Mass Spectrometry (GC-MS), and 76 volatile compounds were identified and quantified. Verdicchio and Lugana had been differentiated on the basis of 19 free and glycosidically bound compounds belonging to the chemical classes of terpenes, benzenoids, higher alcohols, C6 alcohols and norisoprenoids. Samples were assessed by means of a sorting task sensory analysis, resulting in two clusters formed. These results suggested the existence of 2 product types with specific sensory spaces that can be related, to a good extend, to Verdicchio and Lugana wines. Cluster 1 was composed of six wines, 4 of which were Lugana, while Cluster 2 was formed of 7 wines, 5 of which were Verdicchio. The first cluster was described as “fruity”, and “fresh/minty”, while the second as “fermentative” and “spicy”. An attempt was made to relate analytical and sensory data, the results showed that damascenone and the sum of 3 of esters the ethyl hexanoate, ethyl octanoate and isoamyl acetate, was characterizing Cluster 1. These results highlighted the primary importance of geographical origin to the volatile composition and perceived aroma of Lugana and Verdicchio wines.  相似文献   

13.
A noticeable increase in molecular complexity of drug targets has created an unmet need in the therapeutic agents that are larger than traditional small molecules. Macrocycles, which are cyclic compounds comprising 12 atoms or more, are now recognized as molecules that “are up to the task” to interrogate extended protein interfaces. However, because macrocycles (particularly the ones based on peptides) are equipped with large polar surface areas, achieving cellular permeability and bioavailability is anything but straightforward. While one might consider this to be the Achilles'' heel of this class of compounds, the synthetic community continues to develop creative approaches toward the synthesis of macrocycles and their site-selective modification. This perspective provides an overview of both mechanistic and structural issues that bear on macrocycles as a unique class of molecules. The reader is offered a historical foray into some of the classic studies that have resulted in the current renaissance of macrocycles. In addition, an attempt is made to overview the more recent developments that give hope that macrocycles might indeed turn into a useful therapeutic modality.  相似文献   

14.
We report the existence of a sizeable quantum tunnelling splitting between the two lowest electronic spin levels of mononuclear Ni complexes. The level anti-crossing, or magnetic “clock transition”, associated with this gap has been directly monitored by heat capacity experiments. The comparison of these results with those obtained for a Co derivative, for which tunnelling is forbidden by symmetry, shows that the clock transition leads to an effective suppression of intermolecular spin–spin interactions. In addition, we show that the quantum tunnelling splitting admits a chemical tuning via the modification of the ligand shell that determines the crystal field and the magnetic anisotropy. These properties are crucial to realize model spin qubits that combine the necessary resilience against decoherence, a proper interfacing with other qubits and with the control circuitry and the ability to initialize them by cooling.

We have directly monitored spin level anti-crossings, or “clock transitions”, in Ni(ii) molecular monomers and shown that the quantum tunnelling gap admits a chemical tuning.  相似文献   

15.
Protein-protein interactions have become attractive drug targets and recent studies suggest that these interfaces may be amenable to inhibition by small molecules. However, blocking specific interactions may not be the only way of manipulating the extensive network of interacting proteins. Recently, several approaches have emerged for promoting these interactions rather than inhibiting them. Typically, these strategies employ a bifunctional ligand to simultaneously bind two targets, forcing their juxtaposition. Chemically "riveting" specific protein contacts can reveal important aspects of regulation, such as the consequences of stable dimerization or the effects of prolonged dwell time. Moreover, in some cases, entirely new functions arise when two proteins, which normally do not interact, are brought into close proximity with one another. Together with inhibitors, bifunctional molecules are part of a growing toolbox of chemical probes that can be used to reversibly and selectively control the interact-ome. Using these reagents, new insights into the dynamics of protein-protein interactions and their importance in biology are beginning to emerge. Future hurdles in this area lie in the development of robust synthetic platforms for rapidly generating compounds to meet the challenges of diverse protein-protein interfaces.  相似文献   

16.
Development of probes capable of recognizing specific regions of chromosomal DNA has been a long-standing goal for chemical biologists. Current strategies such as PNA, triplex-forming oligonucleotides, and polyamides are subject to target choice limitations and/or necessitate non-physiological conditions, leaving a need for alternative approaches. Toward this end, we have recently introduced double-stranded oligonucleotide probes that are energetically activated for DNA recognition through modification with +1 interstrand zippers of intercalator-functionalized nucleotide monomers. Herein, probes with different chemistries and architectures – varying in the position, number, and distance between the intercalator zippers – are studied with respect to hybridization energetics and DNA-targeting properties. Experiments with model DNA targets demonstrate that optimized probes enable efficient (C 50 < 1 μM), fast (t 50 < 3 h), kinetically stable (>24 h), and single nucleotide specific recognition of DNA targets at physiologically relevant ionic strengths. Optimized probes were used in non-denaturing fluorescence in situ hybridization experiments for detection of gender-specific mixed-sequence chromosomal DNA target regions. These probes present themselves as a promising strategy for recognition of chromosomal DNA, which will enable development of new tools for applications in molecular biology, genomic engineering and nanotechnology.  相似文献   

17.
The discovery of many new targets by chemical genetics has frequently exploited the fact that their biologically active chemical ligands were reactive and thus could covalently bind to their protein target(s). When experimental compounds or therapeutic agents with unidentified mechanisms of action do not contain reactive groups that can covalently label the putative site of molecular action, it may be possible to create a reactive photo-affinity probe if there is sufficient knowledge of the structure-activity relationship of the chemical series. Two specific examples are presented. These include the use of photo-affinity probes in the identification of the mechanism of action of synthetic oxazolidinones, a class of novel acting antibiotics and in the identification of a novel target for the insulin-sensitizing thiazolidinediones. Developments in photo-affinity labeling and combinatorial library design now imply that the parallel incorporation of photo-probes into screening library design could, at least in principle, greatly facilitate reverse pharmacological and chemical genetics approaches to protein target discovery.  相似文献   

18.
Introducing fluorine into molecules has a wide range of effects on their physicochemical properties, often desirable but in most cases unpredictable. The fluorine atom imparts the C–F bond with low polarizability and high polarity, and significantly affects the behavior of neighboring functional groups, in a covalent or noncovalent manner. Here, we report that fluorine, present in the form of a single fluoroalkyl amino acid side chain in the P1 position of the well-characterized serine-protease inhibitor BPTI, can fully restore inhibitor activity to a mutant that contains the corresponding hydrocarbon side chain at the same site. High resolution crystal structures were obtained for four BPTI variants in complex with bovine β-trypsin, revealing changes in the stoichiometry and dynamics of water molecules in the S1 subsite. These results demonstrate that the introduction of fluorine into a protein environment can result in “chemical complementation” that has a significantly favorable impact on protein–protein interactions.  相似文献   

19.
One of the main current strategies for cancer treatment is represented by combination chemotherapy. More recently, this strategy shifted to the “hybrid strategy”, namely the designing of a new molecular entity containing two or more biologically active molecules and having superior features compared with the individual components. Moreover, the term “hybrid” has further extended to innovative drug delivery systems based on biocompatible nanomaterials and able to deliver one or more drugs to specific tissues or cells. At the same time, there is an increased interest in plant-derived polyphenols used as antitumoral drugs. The present review reports the most recent and intriguing research advances in the development of hybrids based on the polyphenols curcumin and resveratrol, which are known to act as multifunctional agents. We focused on two issues that are particularly interesting for the innovative chemical strategy involved in their development. On one hand, the pharmacophoric groups of these compounds have been used for the synthesis of new hybrid molecules. On the other hand, these polyphenols have been introduced into hybrid nanomaterials based on gold nanoparticles, which have many potential applications for both drug delivery and theranostics in chemotherapy.  相似文献   

20.
Mushrooms can be considered a valuable source of natural bioactive compounds with potential polypharmacological effects due to their proven antimicrobial, antiviral, antitumor, and antioxidant activities. In order to identify new potential anticancer compounds, an in-house chemical database of molecules extracted from both edible and non-edible fungal species was employed in a virtual screening against the isoform 7 of the Histone deacetylase (HDAC). This target is known to be implicated in different cancer processes, and in particular in both breast and ovarian tumors. In this work, we proposed the ibotenic acid as lead compound for the development of novel HDAC7 inhibitors, due to its antiproliferative activity in human breast cancer cells (MCF-7). These promising results represent the starting point for the discovery and the optimization of new HDAC7 inhibitors and highlight the interesting opportunity to apply the “drug repositioning” paradigm also to natural compounds deriving from mushrooms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号