首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Medicinal plants belonging to the Verbenaceae family demonstrated antidepressant effects in preclinical studies. Depression is one of the largest contributors to the global health burden of all countries. Plants from the Aloysia genus are traditionally used for affective disorders, and some of them have proven anxiolytic and antidepressant activity. The aim of this work was to evaluate the antidepressant effect of the ethanolic extract of Aloysia gratissima var. gratissima (Agg) and Aloysia virgata var. platyphylla (Avp) in mice. A tail suspension test (TST) and forced swimming test (FST) were conducted after three doses in a period of 24 h and after 7 days of treatment. Imipramine was used as an antidepressant drug. The main results demonstrated that Agg extract reduced the immobility time in mice treated orally for 7 consecutive days when compared to the control group (reduced by about 77%, imipramine 70%). Animals treated with three doses of Avp in a 24-h period had reduced immobility time in the FST (60%), and after 7 days of treatment the reduction was greater (Avp 50, 100, and 200 about 85%; Avp 400, 96.5%; p < 0.0001, imipramine, 77%). LCMS analysis showed the presence of verbascoside, hoffmaniaketone, and hoffmaniaketone acetate in both, A. virgata var. platyphylla and A. gratissima var gratissima. The flavonoids nepetin and 6-hydroxyluteolin were also found in Agg. Both tested extracts demonstrated promising antidepressant-like activity in mice.  相似文献   

2.
Cerium oxide nanoparticle (CeO-NP) was synthesized using Origanum majorana L. leaf extract and characterized using particle size analyzer, transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD) and Fourier transform infrared (FTIR). The antioxidant properties and cytotoxic effects of CeO-NP in human breast carcinoma cells (MDA-MB-231 cell line) and human umbilical vein endothelial cells (HUVEC) as normal cells were evaluated. To determine the probable molecular mechanism of action of CeO-NP on cellular redox and anti-inflammatory potential, the expressions of antioxidant-related genes catalase (CAT), superoxide dismutase (SOD) in HUVEC cell line were also analyzed. The results indicated that spherically shaped nanoparticles with a size of 10–70 nm bound to functional phenolic and flavonoids from O. majorana L. leaf extract. The green synthesized CeO-NP showed antioxidant activity by free radical scavenging activity against DPPH and ABTS free radicals. The antioxidant activity was significantly (p < 0.001) lower than that of Butylated hydroxyanisole (BHA) as a reference antioxidant. The obtained results elucidated that CeO-NP possessed cytotoxicity. The cytotoxic effects of CeO-NP were higher against MDA-MB-231 cancer cells compared to HUVEC normal cells. In addition, this NP was capable to enhance the expression of CAT and SOD as main antioxidant-related genes. Consequently, the higher cytotoxic effects of CeO-NP against breast cancer compared to normal cells indicated the potential use of this NP as anti-cancer agent. However, more research on its cytotoxicity against other cancer cells and mechanisms in which this NP exert its anti-cancer properties should be performed.  相似文献   

3.
In the search of new alternatives for weed control, spices appear as an option with great potential. They are rich in bioactive natural products and edible, which might minimize toxicity hazard. Marjoram (Origanum majorana L.) is an aromatic herb that has been widely employed as a seasoning herb in Mediterranean countries. Although marjoram boasts a plethora of therapeutic properties (painkiller, antibiotic, treatment for intestinal disorders, etc.), the potential for its extracts for weed control is still to be more thoroughly explored. In order to determine their phytotoxic potential, marjoram leaves were subjected to different bioguided extraction processes, using water, ethyl acetate, acetone or methanol. The most active extract (acetone) was sequentially fractionated to identify its most active compounds. This fractionation led to the isolation and identification of 25 compounds that were classified as monoterpenes, diterpenes or flavonoids. Among them, a new compound named majoradiol and several compounds are described in marjoram for the first time. The phytotoxicity of the major compounds to etiolated wheat coleoptiles was compared against that of the commercial herbicide (Logran®), with similar or higher activity in some cases. These results confirm the extraordinary potential of the extracts from this edible plant to develop safer and more environmentally friendly herbicides.  相似文献   

4.
Headspace nanofiber sheet microextraction together with GC–MS and chemometrics resolution techniques were implemented to separate and identify the volatiles emitted by intact marjoram (Origanum majorana L.) and their relative concentrations. A novel polyaniline‐nylon‐6 nanofiber composite was applied for headspace microextraction. Characteristics such as high surface‐to‐volume ratio and π–π functional groups in polyaniline together with the NH and C=O functional groups in nylon‐6 make the polyaniline‐nylon‐6 nanofiber composite a suitable candidate for the extraction of volatiles and semivolatiles. The extracted constituents were desorbed and injected into the GC–MS system under the optimum conditions. Chemometric resolution techniques were utilized to solve the baseline offset, asymmetric peaks, and overlapped peaks problems that arise from GC–MS analysis. By means of these techniques and resolving the overlapped peak clusters, the number of identified constituents was increased to 67 compounds. The major released constituents from the intact marjoram leaves are 4‐terpineol, β‐linalool, cis‐sabinol, and trans‐geraniol.  相似文献   

5.
This study was conducted to examine the chemical constituents of Origanum majorana L. essential oils (EOs) that originate in Nepal, as well as their biological activities, antioxidant properties, and enantiomeric compositions. The EOs were extracted by the hydro-distillation method using a Clevenger-type apparatus and their chemical compositions were determined through gas chromatography and mass spectrometry (GC-MS). Chiral GC-MS was used to evaluate the enantiomeric compositions of EOs. The minimum inhibitory concentrations (MICs) of the essential oils were determined by the micro-broth dilution method, and the antioxidant activity was evaluated by the 2,2-diphenyl-1-picrylhydrazyl scavenging assay and ferric-reducing antioxidant power (FRAP). GC-MS analysis showed the presence of 50 and 41 compounds in the EO samples, (S1) and (S2), respectively, representing the Kathmandu and Bhaktapur districts. The oxygenated monoterpenoids, along with terpinen-4-ol, were predominant constituents in both EO samples. However, the EOs from two locations showed some variations in their major components. The chiral terpenoids for two EO samples of marjoram have also been reported in this study in an elaborative way for the first time in accordance with the literature review. A hierarchical cluster analysis based on the compositions of EOs with 50 compositions reported in the literature revealed at least 5 different chemotypes of marjoram oil. The antioxidant activity for the sample (S2) was found to be relatively moderate, with an IC50 value of 225.61 ± 0.05 μg/mL and an EC50 value of 372.72 ± 0.84 µg/mL, as compared to the standard used. Furthermore, with an MIC value of 78.1 µg/mL, the EO from sample (S2) demonstrated effective antifungal activity against Aspergillus niger and Candida albicans. Moreover, both samples displayed considerable antimicrobial activity. The results suggest that EOs of Origanum majorana possess some noteworthy antimicrobial properties as well as antioxidant activity, and hence can be used as a natural preservative ingredient in the food and pharmaceutical industries.  相似文献   

6.
This study aimed to investigate the effect of the maturation process of sweet marjoram (Origanum majorana L.) on essential oil composition, the phenolic profile of ethanolic extract and their antioxidant capacities. The essential oil composition was studied at three stages of maturity by GC–MS. Thirty compounds were detected representing 100% of the total essential oil. p‐Menth‐1‐en‐4‐ol was the major compound (37.15–76.94%) followed by cyclohexanol‐3,3,5 trimethyl (5.41–15.99%) and α‐terpineol (0.94–11.34%). During the maturation process, an accumulation of oxygenated monoterpenes was observed. The phenolic composition was studied using matrix‐assisted laser desorption/ionization time of flight. The analysis showed the presence of short flavonoid monomers at all stages of maturation. The antioxidant capacity of ethanolic extracts and essential oils was evaluated using the DPPH assay, iron chelating power and reducing power assay. The highest phenolic content and antioxidant capacity were found at flowering stage. These findings on essential oil composition, phenolic profile and antioxidant capacity of O. majorana at three different stages of development provide more information on how these secondary metabolites are accumulated.  相似文献   

7.
Origanum vulgare L. samples, marketed in different geographic locations, were characterized by their organic and inorganic chemical composition. A total of 35 commercial samples were collected from various sites and analyzed to determine the qualitative and quantitative profile of essential oils, phenolic compounds and some inorganic elements. The variation in the content and composition of the essential oil was assessed by GC and GC-MS analyses, the phenolic fraction was investigated by UPLC®/PDA, and the inorganic elements were determined by ICP-MS. The Principal Component Analysis (PCA) was applied with the aim to sort out the Origanum vulgare L. samples with different composition according to the different belonging origins. The results showed appreciable qualitative and quantitative differences among samples from different geographic origin.  相似文献   

8.
(1) The metabolic syndrome (MS) promotes acute and chronic infections, due to the pro-inflammatory condition given by TNFα and IL6 or by affecting the microbiota. MS is also correlated with insulin resistance, causing inflammation and infections throughout the organism. (2) The purpose of this study was to track the effect of using the essential oil of Origanum vulgare L. (EOO) as an antibacterial treatment, compared to allopathic treatment with antibiotics in MS patients. A group of 106 people with MS was divided into four subgroups: L1—staphylococcal infection group, L2—Escherichia coli infection group, L3—streptococcal infection group with EOO treatment, and CG—control group without infection or treatment. (3) EOO is responsible for the antibacterial effect, and reduced minor uncomplicated infections. After a 10-day treatment, intestinal side effects were absent, improving the phase angle. (4) The results suggest that EOO may exhibit an antibacterial effect, similar to the antibiotic treatment, without promoting MS-specific dysbiosis, and it also improves the phase angle in patients, which is used as an index of health and cellular function.  相似文献   

9.
Tagetes erecta L. is a popular ornamental plant of the Asteraceae family, which is widely cultivated not only for its decorative use, but also for the extraction of lutein. Besides carotenoid representatives, which have been extensively studied, other important classes of secondary metabolites present in the plant, such as polyphenols, could exhibit important biological activities. The phytochemical analysis of a methanolic extract obtained from T. erecta inflorescences was achieved using liquid chromatography–mass spectrometry (LC-MS) techniques. The extract was further subjected to a multistep purification process, which allowed the separation of different fractions. The total extract and its fractions contain several polyphenolic compounds, such as hydroxybenzoic and hydroxycinnamic acid derivatives, flavonols (especially quercetagetin glycosides), and several aglycons (e.g., quercetin, patuletin). One of the fractions, containing mostly quercetagitrin, was subjected to two different antioxidant assays (metal chelating activity and lipoxygenase inhibition) and to in vitro cytotoxicity assessment. Generally, the biological assays showed promising results for the investigated fraction compared to the initial extract. Given the encouraging outcome of the in vitro assays, further purification and structural analysis of compounds from T. erecta extracts, as well as further in vivo investigations are justified.  相似文献   

10.
Plants of the genus Agrimonia L. perfectly fit the current trends in nutrition and food technology, namely, the need for raw materials with a high content of bioactive natural compounds, including polyphenols, which could be added to food. The composition of polyphenolics, including agrimoniin and flavonoids, in the aerial parts of Agrimonia procera Wallr. (A. procera) and Agrimonia eupatoria L. (A. eupatoria) (Rosaceae) was determined using HPLC-DAD-MS. The polyphenolic content of A. procera was found to be 3.9%, 3.2%, 2.9%, 1.8% and 1.1%, and that of A. eupatoria was determined to be 1.3%, 0.3%, 0.9%, 0.6% and 0.5% in the dry matter of leaves, stems, fruits, seeds and hypanthia, respectively. Except for A. procera hypanthia, agrimoniin was the main polyphenolic compound in the aerial parts of the studied Agrimonia species. Both plants are also a valuable source of flavonoid glycosides, especially apigenin, luteolin and quercetin. The obtained data indicate that both A. procera and A. eupatoria are potentially good sources of polyphenols (albeit significantly different in terms of their qualitative and quantitative composition), and may not only be a medicinal raw material, but also a valuable material for food use such as nutraceuticals or functional food ingredients.  相似文献   

11.
Anti-aging is a challenging and necessary research topic. Momordica charantia L. is a common edible medicinal plant that has various pharmacological activities and is often employed in daily health care. However, its anti-aging effect on mice and the underlying mechanism thereof remain unclear. Our current study mainly focused on the effect of Momordica charantia L. on d-galactose-induced subacute aging in mice and explored the underlying mechanism. UHPLC-Q-Exactive Orbitrap MS was applied to qualitatively analyze the chemical components of Momordica charantia L. ethanol extract (MCE). A subacute aging mice model induced by d-galactose (d-gal) was established to investigate the anti-aging effect and potential mechanism of MCE. The learning and memory ability of aging mice was evaluated using behavioral tests. The biochemical parameters, including antioxidant enzyme activity and the accumulation of lipid peroxides in serum, were measured to explore the effect of MCE on the redox imbalance caused by aging. Pathological changes in the hippocampus were observed using hematoxylin and eosin (H&E) staining, and the levels of aging-related proteins in the PI3K/AKT signaling pathway were assessed using Western blotting. The experimental results demonstrated that a total of 14 triterpenoids were simultaneously identified in MCE. The behavioral assessments results showed that MCE can improve the learning and memory ability of subacute mice. The biochemical parameters determination results showed that MCE can improve the activity of antioxidant enzymes and decrease the accumulation of lipid peroxides in aging mice significantly. Furthermore, aging and injury in the hippocampus were ameliorated. Mechanistically, the results showed a significant upregulation in the protein expression of P-PI3K/PI3K and P-AKT/AKT (p < 0.01), as well as a significant reduction in cleaved caspase-3/caspase-3, Bax and P-mTOR/mTOR (p < 0.01). Our results confirm that MCE could restore the antioxidant status and improve cognitive impairment in aging mice, inhibit d-gal-induced apoptosis by regulating the PI3K/AKT signaling pathway, and rescue the impaired autophagy caused by mTOR overexpression, thereby exerting an anti-aging effect.  相似文献   

12.
Tea plants (Camellia sinensis L.) are phenol-accumulating crops that are widely used for public health. The healing effect of tea leaf products is due to the biosynthesis of such phenolic compounds (PCs) as flavans, which have P-vitamin capillary-strengthening activity. Due to their limited habitat and the value of their specialized metabolites of a phenolic nature, a promising approach is to establish in vitro cultures from them that retain the ability to form PCs, which is characteristic of ex vivo tea plants. The aim of this study was to investigate the effect of exogenic H2O2 (0.01 mM; 0.1 mM; 1 mM) on the growth, morphology, degree of stress response, and accumulation of various phenolic compounds in tea plant callus cultures of different ages (24 or 36 days) grown under different cultivation conditions (darkness or light). According to the results obtained, the H2O2 effect on tea callus cultures of different ages did not cause changes in their morphophysiological characteristics, both after 2 h of exposure (rapid response of callus culture, RRCC) and after 48 h (delayed response of callus culture, DRCC). The determination of the malondialdehyde (MDA) content, which serves as an indicator of changes in the level of lipid peroxidation (LPO) and the presence of stress responses in plant cells, indicated either its maintenance at the control level, a decrease, or an increase. All these effects depended on the growth conditions of the tea callus cultures (darkness or light), their age, the duration of exposure (rapid or delayed response), and the H2O2 concentration. Similar trends were noted for the total content of PCs as well as the amount of flavans, proanthocyanidins (soluble and insoluble forms), and lignin. The plant cell responses reflected changes in its adaptation programs, when specialized metabolites act as a target for the action of H2O2, thereby contributing to an increase in their resistance.  相似文献   

13.
In our study, Allium subhirsutum L. (AS) was investigated to assess its phenolic profile and bioactive molecules including flavonoids and organosulfur compounds. The antioxidant potential of AS and wound healing activity were addressed using skin wound healing and oxidative stress and inflammation marker estimation in rat models. Phytochemical and antiradical activities of AS extract (ASE) and oil (ASO) were studied. The rats were randomly assigned to four groups: group I served as a control and was treated with simple ointment base, group II was treated with ASE ointment, group III was treated with ASO ointment and group IV (reference group; Ref) was treated with a reference drug “Cytolcentella® cream”. Phytochemical screening showed that total phenols (215 ± 3.5 mg GAE/g) and flavonoids (172.4 ± 3.1 mg QE/g) were higher in the ASO than the ASE group. The results of the antioxidant properties showed that ASO exhibited the highest DPPH free radical scavenging potential (IC50 = 0.136 ± 0.07 mg/mL), FRAP test (IC50 = 0.013 ± 0.006 mg/mL), ABTS test (IC50 = 0.52 ± 0.03 mg/mL) and total antioxidant capacity (IC50 = 0.34 ± 0.06 mg/mL). In the wound healing study, topical application of ASO performed the fastest wound-repairing process estimated by a chromatic study, percentage wound closure, fibrinogen level and oxidative damage status, as compared to ASE, the Cytolcentella reference drug and the untreated rats. The use of AS extract and oil were also associated with the attenuation of oxidative stress damage in the wound-healing treated rats. Overall, the results provided that AS, particularly ASO, has a potential medicinal value to act as effective skin wound healing agent.  相似文献   

14.
Argania spinosa L. Skeels is an emblematic tree in Morocco, known worldwide for its medicinal and nutritional value. Its fruits contain kernels used to prepare an edible oil, the leaves are used to feed livestock, and its wood is used as fuel. If the oil acquires high importance, the other components of the fruit of the argan are undervalued. Our objective is to invest the waste of the argan industry. Particularly, our study aimed to assess the effect of thermal activation of argan pulp on its therapeutic value, its phenolic profile and its functional and physicochemical properties. After heat treatment, the HPLC analysis for the average total phenolic content varied from 2% to 37%, depending on temperature. The antioxidant activity was increased with heat treatment. Higher values of antioxidant activity, polyphenol and pigment content were recorded at 70 °C. Functional properties analysis indicated that water solubility index and water absorption capacity were significantly affected by heat stress. Physicochemical analysis showed that moisture content, titratable acidity and soluble solids were affected.  相似文献   

15.
Rosmarinus officinalis L. is a widely known species for its medicinal uses, that is also used as raw material for the food and cosmetic industry. The aim of the present study was to offer a novel perspective on the medicinal product originating from this species and to test its hepatoprotective activity. The tested sample consisted in a tincture obtained from the fresh young shoots. Compounds that are evaluated for this activity are polyphenols and terpenoids, that are identified and quantified by HPLC–UV–MS and GC–MS. Antioxidant activity was assessed in vitro, using the DPPH, FRAP and SO assays. Hepatoprotective activity was tested in rats with experimentally-induced hepatotoxicity. In the chemical composition of the tincture, phenolic diterpenes (carnosic acid, carnosol, rosmanol, rosmadial) and rosmarinic acid were found to be the majority compounds, alongside with 1,8-cineole, camphene, linalool, borneol and terpineol among monoterpenes. In vitro, the tested tincture proved significant antioxidant capacity. Results of the in vivo experiment showed that hepatoprotective activity is based on an antioxidant mechanism. In this way, the present study offers a novel perspective on the medicinal uses of the species, proving significant amounts of polyphenols and terpenes in the composition of the fresh young shoots tincture, that has proved hepatoprotective activity through an antioxidant mechanism.  相似文献   

16.
A new type of multigrain snack has been designed containing varied additions of Moldavian dragonhead (Dracocephalum moldavica L.) seeds. The antioxidant properties and the general health benefits of this plant material have already been widely acknowledged. The research discussed herein aimed to investigate the influence of the formulation and expansion method (frying) on the content of polyphenolic compounds, individual phenolic acids, and antiradical properties of innovative snacks enriched with dragonhead seeds. The highest content of polyphenols (0.685 mg GAE/mL), free phenolic acids (47.052 µg/g of dry matter), and highest radical scavenging activity (96.23% towards DPPH) were found in the fried snacks enriched with 22% of seeds. In these samples, 11 phenolic acids were detected. Strong positive correlations were seen between the addition of dragonhead and the polyphenol content (r = 0.989) and between the quantity of the enriching additive and the content of free phenolic acids (r = 0.953). The research has shown that such innovative snacks have the potential to supply health-benefiting free phenolic acids, e.g., salicylic, isoferulic, ferulic, p-coumaric, vanillic. Our studies provide an introduction to the development of a new range of functional foods.  相似文献   

17.
Functional nutrition is a valuable supplementation to dietary therapy. Functional foods are enriched with biologically active substances. Plant polyphenols attract particular attention due to multiple beneficial properties attributed to their high antioxidant and other biological activities. We assessed the effect of grape polyphenols on the life span of C57BL/6 mice and on behavioral and neuroinflammatory alterations in a transgenic mouse model of Parkinson disease (PD) with overexpression of the A53T-mutant human α-synuclein. C57BL/6 mice were given a dietary supplement containing grape polyphenol concentrate (GPC—1.5 mL/kg/day) with drinking water from the age of 6–8 weeks for life. Transgenic PD mice received GPC beginning at the age of 10 weeks for four months. GPC significantly influenced the cumulative proportion of surviving and substantially augmented the average life span in mice. In the transgenic PD model, the grape polyphenol (GP) diet enhanced memory reconsolidation and diminished memory extinction in a passive avoidance test. Behavioral effects of GP treatment were accompanied by a decrease in α-synuclein accumulation in the frontal cortex and a reduction in the expression of neuroinflammatory markers (IBA1 and CD54) in the frontal cortex and hippocampus. Thus, a GP-rich diet is recommended as promising functional nutrition for aging people and patients with neurodegenerative disorders.  相似文献   

18.
Punica granatum L. (Punicaceae) is a popular fruit all over the world. Owning to its enriched polyphenols, P. granatum has been widely used in treating inflammation-related diseases, such as cardiovascular diseases and cancer. Twenty polyphenols, containing nine unreported ones, named punicagranins A–I (1–9), along with eleven known isolates (10–20), were obtained from the peels. Their detailed structures were elucidated based on UV, IR, NMR, MS, optical rotation, ECD analyses and chemical evidence. The potential anti-inflammatory activities of all polyphenols were examined on a lipopolysaccharide (LPS)-induced inflammatory macrophages model, which indicated that enhancing nitric oxide (NO) production in response to inflammation stimulated in RAW 264.7 cells was controlled by compounds 1, 3, 5–8, 10, 11, 14 and 16–20 in a concentration-dependent manner. The investigation of structure–activity relationships for tannins 6–8 and 12–20 suggested that HHDP, flavogallonyl and/or gallagyl were key groups for NO production inhibitory activity. Western blotting indicated that compounds 6–8 could down-regulate the phosphorylation levels of proteins p38 MAPK, IKKα/β, IκBα and NF-κB p65 as well as inhibit the levels of inflammation-related cytokines and mediators, such as IL-6, TNF-α, iNOS and COX-2, at the concentration of 30 μM. In conclusion, polyphenols are proposed to be the potential anti-inflammatory active ingredients in P. granatum peels, and their molecular mechanism is likely related to the regulation of the p38 MAPK and NF-κB signaling pathways.  相似文献   

19.
In this work the HPLC and NMR analysis of the phenyl-ethanoid glycosides (PhGs) pattern of a cultivated exemplar of Verbascum thapsus L. (Scrophulariaceae) from the Etnean area (Sicily, Italy) was performed in order to verify their possible presence. Wild V. thapsus is well-known in ethnopharmacology due to the several beneficial effects that it is able to exert and which are primarily due to these compounds. So, it’s extremely important that also cultivated exemplars of this species biosynthesize them in order to maintain their pharmacological properties. This study revealed the presence of seven PhGs in an unusual novel pattern. Thus, this exemplar is a very good potential source of this class of natural products and may be employed for several beneficial ethnopharmacological purposes.  相似文献   

20.
The aim of this work is to characterize the active constituents present in the ethyl acetate fraction of Senna tora, L. Roxb. seeds. Due to the fact that the main biological activity of S. tora, L seeds is attributed to its phenolic compounds which are mainly isolated from Ethyl acetate fraction, to avoid repetition of work and to save time, it was deemed necessary to confirm the identity of these phenolic compounds. This was done by GC-MS and LC-MS analysis of the ethyl acetate fraction where the structures of the isolated compounds were established on the basis of molecular ion peak and their fragmentation pattern. They were identified as Chrysophanol, Chrysarobin, 10-hydroxy-5-methoxy-2-methyl-1, 4-anthracenedione, Rubrofusarin, Parietin, Griseoxanthone-B, Isotorachrysone, and Cumbiasin B.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号