首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
A series of novel nopol derivatives bearing the 1,3,4-thiadiazole-thiourea moiety were designed and synthesized by multi-step reactions in search of potent natural product-based antifungal agents. Their structures were confirmed by FT-IR, NMR, ESI-MS, and elemental analysis. Antifungal activity of the target compounds was preliminarily evaluated by in vitro methods against Fusarium oxysporum f. sp. cucumerinum, Cercospora arachidicola, Physalospora piricola, Alternaria solani, Gibberella zeae, Rhizoeotnia solani, Bipolaris maydis, and Colleterichum orbicalare at 50 µg/mL. All the target compounds exhibited better antifungal activity against P. piricola, C. arachidicola, and A. solani. Compound 6j (R = m, p-Cl Ph) showed the best broad-spectrum antifungal activity against all the tested fungi. Compounds 6c (R = m-Me Ph), 6q (R = i-Pr), and 6i (R = p-Cl Ph) had inhibition rates of 86.1%, 86.1%, and 80.2%, respectively, against P. piricola, much better than that of the positive control chlorothalonil. Moreover, compounds 6h (R = m-Cl Ph) and 6n (R = o-CF3 Ph) held inhibition rates of 80.6% and 79.0% against C. arachidicola and G. zeae, respectively, much better than that of the commercial fungicide chlorothalonil. In order to design more effective antifungal compounds against A. solani, analysis of the three-dimensional quantitative structure–activity relationship (3D-QSAR) was carried out using the CoMFA method, and a reasonable and effective 3D-QSAR model (r2 = 0.992, q2 = 0.753) has been established. Furthermore, some intriguing structure–activity relationships were found and are discussed by theoretical calculation.  相似文献   

2.
3.
Essential oils of Erigeron canadensis L. and Myrtus communis L. were tested in vitro as growth inhibitors against phytopathogenic fungi Rhizoctonia solani Kuhn, Fusarium solani (Mart.) Sacc. and Colletotrichum lindemuthianum (Sacc. & Magn.) Briosi & Cav. Both showed weak fungicidal acitivity, except the essential oil of M. communis that exerted a 60% growth inhibition against R. Solani at a dose of 1600 ppm. Microscopic observation revealed that the essential oil of M. Communis caused morphological alterations of hyphae of all fungi at 1600 ppm, while, at the same dose, only the hyphal morphology of C. Lindemuthianum was affected by the essential oil of Er. Canadensis.  相似文献   

4.
In the current research, our work measured the effect of silver nanoparticles (AgNP) synthesized from Larrea tridentata (Sessé and Moc. ex DC.) on the mycelial growth and morphological changes in mycelia from different phytopathogenic and beneficial fungi. The assessment was conducted in Petri dishes, with Potato-Dextrose-Agar (PDA) as the culture medium; the AgNP concentrations used were 0, 60, 90, and 120 ppm. Alternaria solani and Botrytis cinerea showed the maximum growth inhibition at 60 ppm (70.76% and 51.75%). Likewise, Macrophomina spp. required 120 ppm of AgNP to achieve 65.43%, while Fusarium oxisporum was less susceptible, reaching an inhibition of 39.04% at the same concentration. The effect of silver nanoparticles was inconspicuous in Pestalotia spp., Colletotrichum gloesporoides, Phytophthora cinnamomi, Beauveria bassiana, Metarhizium anisopliae, and Trichoderma viridae fungi. The changes observed in the morphology of the fungi treated with nanoparticles were loss of definition, turgidity, and constriction sites that cause aggregations of mycelium, dispersion of spores, and reduced mycelium growth. AgNP could be a sustainable alternative to managing diseases caused by Alternaria solani and Macrophomina spp.  相似文献   

5.
Antifungal assay-guided fractionation of the methanolic crude extract of Cestrum nocturnum (Solanaceae), popular known as ‘lady of the night’, led the isolation and identification of the steroidal saponin named pennogenin tetraglycoside, which was identified for the first time in this plant species by spectroscopic means. The crude extract, fractions and pennogenin tetraglycoside exhibited mycelial growth inhibition of Fusarium solani and F. kuroshium. F. solani is a cosmopolitan fungal phytopathogen that affects several economically important crops. However, we highlight the antifungal activity displayed by pennogenin tetraglycoside against F. kuroshium, since it is the first plant natural product identified as active for this phytopathogen. This fungus along with its insect symbiont known as Kuroshio shot hole borer (Euwallacea kuroshio) are the causal agents of the plant disease Fusarium dieback that affects more than 300 plant species including avocado (Persea americana) among others of ecological relevance. Scanning electron microscopy showed morphological alterations of the fungal hyphae after exposure with the active fractions and 12 phenolic compounds were also identified by mass spectrometry dereplication as part of potential active molecules present in C. nocturnum leaves.  相似文献   

6.
A series of novel menthol derivatives containing 1,2,4-triazole-thioether moiety were designed, synthesized, characterized structurally, and evaluated biologically to explore more potent natural product-based antifungal agents. The bioassay results revealed that at 50 μg/mL, some of the target compounds exhibited good inhibitory activity against the tested fungi, especially against Physalospora piricola. Compounds 5b (R = o-CH3 Ph), 5i (R = o-Cl Ph), 5v (R = m,p-OCH3 Ph) and 5x (R = α-furyl) had inhibition rates of 93.3%, 79.4%, and 79.4%, respectively, against P. piricola, much better than that of the positive control chlorothalonil. Compounds 5v (R = m,p-OCH3 Ph) and 5g (R = o-Cl Ph) held inhibition rates of 82.4% and 86.5% against Cercospora arachidicola and Gibberella zeae, respectively, much better than that of the commercial fungicide chlorothalonil. Compound 5b (R = o-CH3 Ph) displayed antifungal activity of 90.5% and 83.8%, respectively, against Colleterichum orbicalare and Fusarium oxysporum f. sp. cucumerinum. Compounds 5m (R = o-I Ph) had inhibition rates of 88.6%, 80.0%, and 88.0%, respectively, against F. oxysporum f. sp. cucumerinu, Bipolaris maydis and C. orbiculare. Furthermore, compound 5b (R = o-CH3 Ph) showed the best and broad-spectrum antifungal activity against all the tested fungi. To design more effective antifungal compounds against P. piricola, 3D-QSAR analysis was performed using the CoMFA method, and a reasonable 3D-QSAR model (r2 = 0.991, q2 = 0.514) was established. The simulative binding pattern of the target compounds with cytochrome P450 14α-sterol demethylase (CYP51) was investigated by molecular docking.  相似文献   

7.
Abstract

Phenazine-1-carboxylic acid (PCA) as a natural product which has significant inhibition effects against many soil-borne fungal phytopathogens in agricultural application and has been registered in China as the fungicide against rice sheath blight. In order to find new higher fungicidal activities lead compounds and develop new eco-friendly agrochemicals, we introduced substructure piperazines which also have high biological activity into PCA, designed and synthesized a series of phenazine-1-carboxylic piperazine derivatives, and their structures were confirmed by 1H NMR and HRMS. Most compounds exhibited certain in vitro fungicidal activities. In particular, Compounds 5r exhibited the activity against all the tested pathogenic fungi, such as Rhizoctonia solani, Alternaria solani, Fusarium oxysporum, Fusarium graminearum, Pyricularia oryzac Cavgra, with the EC50 value of 24.6μM, 42.9μM, 73.7μM, 73.8μM, 34.2μM, respectively, more potent activities than PCA (33.2μM, 81.5μM, 186.5μM, 176.4μM, 37.3μM). This result provided a highly active lead compound for the further structure optimization design.  相似文献   

8.
A series of novel phthalimides was prepared and tested for antifungal activity in vitro against seven phytopathogenic fungi:Rhizoctonia solani, Fusarium oxysporum f.sp. cucumerinum Owen., Botrytis cinerea, Fulvia fulva, Sclerotinia sclerotiorum de Bary, Phytophthora capsici, Botryosphaeria berengeriama. The results showed that those compounds holding the structure of 6‐methylpyridin‐2‐yl exhibited good activity against Phytophthora capsici and Botrytis cinerea.  相似文献   

9.
A biofungicide is a natural product that can be derived from various sources such as, among others, microorganisms, higher plants, animal products, phytochemicals, semiochemicals, and antagonist microorganisms. One of the most important approaches for the production of biofungicides is the combination of biocontrol agents. This study showed the inhibition growth of Alternaria alternata and Fusarium solani treated with cell-free extracts of P. fluorescens. Using thin-layer chromatography and plate assays it was also demonstrated that the cell-free extracts of P. fluorescens contained siderophores and derivates of 4-diacetylphloroglucinol and phenazine. Moreover, the combination of cell-free extracts of P. fluorescens and chitosan [50–1.5% (v/v)] had a synergistic effect since they notably inhibited the mycelial growth of A. altenata and F. solani. Various morphological alterations to the mycelia and conidia of the treated fungi as a result of this combination were also observed. The present study could be a starting point to control other fungal phytopathogens using different cell-free extracts and chitosan as biocontrol agents.  相似文献   

10.
In this study, the antifungal potential of chemical constituents from Piper pesaresanum and some synthesized derivatives was determined against three phytopathogenic fungi associated with the cocoa crop. The methodology included the phytochemical study on the aerial part of P. pesaresanum, the synthesis of some derivatives and the evaluation of the antifungal activity against the fungi Moniliophthora roreri, Fusarium solani and Phytophthora sp. The chemical study allowed the isolation of three benzoic acid derivatives (1–3), one dihydrochalcone (4) and a mixture of sterols (5–7). Seven derivatives (8–14) were synthesized from the main constituents, of which compounds 9, 10, 12 and 14 are reported for the first time. Benzoic acid derivatives showed strong antifungal activity against M. roreri, of which 11 (3.0 ± 0.8 µM) was the most active compound with an IC50 lower compared with positive control Mancozeb® (4.9 ± 0.4 µM). Dihydrochalcones and acid derivatives were active against F. solani and Phytophthora sp., of which 3 (32.5 ± 3.3 µM) and 4 (26.7 ± 5.3 µM) were the most active compounds, respectively. The preliminary structure–activity relationship allowed us to establish that prenylated chains and the carboxyl group are important in the antifungal activity of benzoic acid derivatives. Likewise, a positive influence of the carbonyl group on the antifungal activity for dihydrochalcones was deduced.  相似文献   

11.
A series of novel substituted bis-benzimidazole derivatives were synthesized by reaction of 5,5′-methylenebis(2-hydroxybenzaldehyde) with various substituted o-phenylenediamines in glacial acetic acid. The structure of the newly synthesized compounds was elucidated by 1H and 13C NMR, FT-IR, and MS spectra, and their antimicrobial activity against gram positive and gram negative bacteria and antifungal activity were evaluated. The thienyl-substituted derivative showed significant activity against Bacillus licheniformis. Bacillus subtilis, Staphylococcus aureus, Klebsiella pneumonia (bacteria), and Fusarium solani (fungi). The activities of the fluoro-substituted substituted derivative against some bacterial strains and of the thienyl-substituted derivative against fungi were found to be similar to those of standard drugs.  相似文献   

12.
Mycotoxins, toxic secondary metabolites produced by fungi, are important contaminants in food and agricultural industries around the world. These toxins have a multidirectional toxic effect on living organisms, causing damage to the kidneys and liver, and disrupting the functions of the digestive tract and the immune system. In recent years, much attention has been paid to the biological control of pathogens and the mycotoxins they produce. In this study, selected yeasts were used to reduce the occurrence of deoxynivalenol (DON), nivalenol (NIV), and zearalenone (ZEA) produced by Fusarium culmorum, F. graminearum, and F. poae on wheat grain and bread. In a laboratory experiment, an effective reduction in the content of DON, NIV, and ZEA was observed in bread prepared by baking with the addition of an inoculum of the test yeast, ranging from 16.4% to 33.4%, 18.5% to 36.2% and 14.3% to 35.4%, respectively. These results indicate that the selected yeast isolates can be used in practice as efficient mycotoxin decontamination agents in the food industry.  相似文献   

13.
3‐Piperazine‐bis(benzoxaborole) and its bis(phenylboronic acid) analogue were investigated in terms of their fungicidal activity. The study was carried out against five filamentous fungi: Aspergillus terreus, Fusarium dimerum, Fusarium solani, Penicillium ochrochloron and Aspergillus niger. 3‐Piperazine‐bis(benzoxaborole) revealed higher inhibitory activity towards the examined strains than standard antibiotic (amphotericin B), whereas bis(phenylboronic acid) proved to be inactive. The study unequivocally showed that the presence of the heterocyclic benzoxaborole system is essential for antifungal action of the examined compounds. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
Six known compounds, isoroquefortine C (1), griseofulvin (2), ergosterol peroxide (3), 3β-hydroxy-(22E,24R)-ergosta-5,8,22-trien-7-one (4), cerevisterol (5) and (22E,24R)-6β-methoxyergosta-7,22-diene-3β,5α-diol (6), were produced by the fungus Penicillium brasilianum, and their structures were elucidated by spectroscopic methods. This is the first report on isoroquefortine C as naturally occurring compound. Their bioactivities against five phytopathogenic fungi (Gibeberalla saubinetti, Fusarium solani, Botrytis cinerea, Colletotrichum gloeosporioides and Alternaria solani) and four pathogenic bacteria (Escherichia coli, Bacillus subtilis, Staphyloccocus aureus and Bacillus cereus), as well as allelopathic activities on Raphanus sativus were tested. Compound 1 exhibited a remarkable antifungal activity with minimum inhibitory concentration (MIC) of 12.5 μM against C. gloeosporioides, in comparison with positive control hymexazol (MIC 25 μM). Compound 2 displayed strong inhibitory effects on the growth of A. solani and S. aureus with MIC of 3.13 μM for each. Compounds 2 and 3 displayed a significant growth-inhibition activity on R. sativus.  相似文献   

15.
Plant-pathogenic Fusarium species, Fusarium verticillioides and Fusarium proliferatum, are the major producers of fumonisins which are one of the most common mycotoxins found in maize. Herein, we report the development of specific and sensitive genosensors for detecting these two closely related Fusarium species in food samples. The sensors are based on species-specific capture and detection probes, which bind to the intergenic spacer region of rDNA (IGS). Oligonucleotide functionalized magnetic microbeads are used to capture the target DNA which is then detected using biotinylated detection probes and a streptavidin-coupled label. The developed genosensors had detection limits of 1.8 pM and 3.0 pM for F. proliferatum and F. verticillioides, respectively, using synthetic DNA targets. Furthermore, the biosensors were used to analyze natural fungal contamination of commercial maize samples. After amplification of the genomic DNA the sensors detected the presence of the fungi, in accordance with previous results obtained with PCR. No cross-reactivity between F. verticillioides and F. proliferatum, or other fungi species tested, was observed. The developed biosensors can provide a valuable tool to evaluate the potential for mycotoxin contamination in conditions where detection of mycotoxins directly is challenging.  相似文献   

16.
Cinnamomum camphora leaf essential oil (CEO) was extracted using enzymatic-ultrasound pretreatment followed by microwave assisted extraction (EUP-MAE) method and simultaneously studied as a mycelial growth inhibitor against five important pathogens which cause potato dry rot. The optimum EUP-MAE conditions with a real CEO yield of 19.23 ± 0.12 mg/g were obtained through Plackett–Burman design and Box–Behnken design as follows: 3 % of enzyme dosage, 2 h of pretreatment time, 5 of pH, 210 W of ultrasound power, 50 °C pretreatment temperature, 16 mL/g of water to solid ratio, 30 min of microwave time and 500 W of microwave power. Compared to the reference methods, EUP-MAE possessed a highest CEO yield than these of ultrasound-microwave assisted extraction (U-MAE) and traditional hydrodistillation (HD). Gas chromatography-mass spectrometry (GC–MS) analysis demonstrated that eucalyptol, camphor, and α-terpineol were the three main constituents of CEO. Results from in vitro antifungal activity assay revealed that the mycelial growths of all the five tested Fusarium solani, Fusarium culmorum, Fusarium trichothecioides, Fusarium sporotrioides, and Fusarium avenaceum were apparently affected by CEO. These findings not only provide a potential paradigm for the separation of plant essential oil, but also guarantee a promising utilization of the CEO for potato protection to control the Fusarium spp.  相似文献   

17.
New 3-hydroxy-2-methoxyflavanones have been obtained through epoxidation-methanolysis of the corresponding flavone with urea-hydrogen peroxide (UHP)/methyltrioxorhenium (CH3ReO3, MTO) catalytic system in methanol as nucleophilic solvent. After acetylation of the reaction mixtures, the corresponding cis- and trans-3-acetoxy-2-methoxyflavanones have been isolated and characterized by spectroscopic analyses. Their antifungal activity has been tested in vitro against three fungal strains of common saprotrophic soil and seed fungi, such as Trichoderma koningii, Fusarium solani and Cladosporium herbarum, potentially pathogenic for humans. Some aspects of the structure-activity relationship of the most active compounds have been evaluated. The mycelial growth of T. koningii and C. herbarum has been totally inhibited from cis-3-acetoxy-2,6-dimethoxyflavanone 7c and cis-3-acetoxy-2,7-dimethoxyflavanone 13c at the lowest concentration (0.5×10−4 M).  相似文献   

18.
Reasonable pure fluorinated s-triazines were synthesized in quantitative yield (96-99%) in 2-3 min in aqueous medium under microwaves, by reaction of fluorinated anilines and aqueous formaldehyde. All synthesized compounds have been screened in vitro for their antifungal activity against Rhizoctonia solani, Fusarium oxysporum, and Collectotrichum capsici.  相似文献   

19.
This work was aimed to evaluate the essential oil from root of medicinally important plant Senecio amplexicaulis for chemical composition, antifungal and phytotoxic activity. The chemical composition analysed by GC/GC–MS showed the presence of monoterpene hydrocarbons in high percentage with marker compounds as α-phellandrene (48.57%), o-cymene (16.80%) and β-ocimene (7.61%). The essential oil exhibited significant antifungal activity against five phytopathogenic fungi, Sclerotium rolfsii, Macrophomina phaseolina, Rhizoctonia solani, Pythium debaryanum and Fusarium oxysporum. The oil demonstrated remarkable phytotoxic activity in tested concentration and significant reduction in seed germination percentage of Phalaris minor and Triticum aestivum at higher concentrations. The roots essential oil showed high yield for one of its marker compound (α-phellandrene) which makes it important natural source of this compound.  相似文献   

20.
The present investigation deals with the synthesis of seven azomethine derivatives 17 of aza heterocyclic amines by carrying out condensation reaction of them with veratraldehyde followed by cyclizing the CHN moiety in synthesized azomethines of 4-amino-1,2,4-triazole and 4-amino antipyrine to yield β lactam derivatives 89. The chemical constituents in the synthesized compounds were confirmed by UV, IR, 1H NMR, 13C NMR, and elemental analysis. In vitro antifungal activity of all the synthesized products was done against four pathogenic maize fungal strains i.e. Fusarium verticillioides, Macrophomina phaseolina, Rhizoctonia solani, and Dreschlera maydis. It was found that azomethine derivative having 4-amino-1,2,4-triazole ring was as effective as standard carbendazim 50 WP against R. solani and may be considered as promising antifungal agent; therefore further modifications may be done in its structure to get better drug candidate in future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号