首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The geometrical structure of the Au‐Fe2O3 interfacial perimeter, which is generally considered as the active sites for low‐temperature oxidation of CO, was examined. It was found that the activity of the Au/Fe2O3 catalysts not only depends on the number of the gold atoms at the interfacial perimeter but also strongly depends on the geometrical structure of these gold atoms, which is determined by the size of the gold particle. Aberration‐corrected scanning transmission electron microscopy images unambiguously suggested that the gold particles, transformed from a two‐dimensional flat shape to a well‐faceted truncated octahedron when the size slightly enlarged from 2.2 to 3.5 nm. Such a size‐induced shape evolution altered the chemical bonding environments of the gold atoms at the interfacial perimeters and consequently their catalytic activity. For Au particles with a mean size of 2.2 nm, the interfacial perimeter gold atoms possessed a higher degree of unsaturated coordination environment while for Au particles with a mean size of 3.5 nm the perimeter gold atoms mainly followed the atomic arrangements of Au {111} and {100} facets. Kinetic study, with respect to the reaction rate and the turnover frequency on the interfacial perimeter gold atom, found that the low‐coordinated perimeter gold atoms were intrinsically more active for CO oxidation. 18O isotopic titration and Infrared spectroscopy experiments verified that CO oxidation at room temperature occurred at the Au‐Fe2O3 interfacial perimeter, involving the participation of the lattice oxygen of Fe2O3 for activating O2 and the gold atoms for CO adsorption and activation.  相似文献   

2.
The preparation and catalytic activity of ferric oxide and its composite oxides supported gold catalysts for low-temperature CO oxidation were investigated detailedly, and characterized extensively by XRD, XPS, TPR, EC and XAFS techniques. It was found that containing highly dispersed Au of partially oxidized state, these nano-structured oxides supported Au/Fe2O3 and Au/NiFe2O4 catalysts had higher low-temperature activities. The possible catalytic active center is the gold of partially oxidized state (Auζ+).  相似文献   

3.
《Analytical letters》2012,45(14):2747-2757
Abstract

A novel functional electrode was obtained by implanting NH2 + into ITO film (NH2/ITO) for the first time. The NH2/ITO surface showed a better affinity to gold nanoparticles than bare ITO. Gold nanoparticles were deposited on the surface of NH2/ITO electrode (Au/NH2/ITO). The Au/NH2/ITO and NH2/ITO electrodes were used to observe the electrochemical behavior of Hemoglobin (Hb) immobilized on the electrodes surfaces. The peak current value of Hb immobilized on NH2/ITO increased compared with on bare ITO while peak current value of Hb immobilized on Au/NH2/ITO increased compared with on Au/ITO. Linkage between the ‐NH2 implanted into the ITO film and the ‐COOH of Hb was thought to be the reason for the increase of active Hb coverage on NH2/ITO compared with bare ITO. Increase of active Hb coverage on Au/NH2/ITO compare with Au/ITO was attributed to the different amount of gold nanoparticles deposited. Results showed the novel NH2/ITO and Au/NH2/ITO electrodes exhibited good stability, reproducibility besides selectivity and sensitivity. The electrode process of Hb immobilized on Au/NH2/ITO was quasi‐reversible with adsorption. The electrode reaction rate constant ks and other related constants were determined. X‐ray photoelectron spectroscopy (XPS), field‐emission scanning electron microscopy (FE‐SEM), and impedance spectra were used to characterize the different surfaces.  相似文献   

4.
The kinetics and mechanism of the electrooxidation of gold and thiocarbamide in sulfuric acid solutions of thiocarbamide (TC) have been investigated. The potentials for the oxidation of gold in TC solutions to [Au(TC)2]+ ads and [Au(TC)3]3+ ads are 0.132 and 0.561 V (relative to the standard silver chloride electrode). The electrooxidation of thiocarbamide in sulfuric acid solution is characterized by two maximums on voltammograms at 0.983 V (formation of formamidine disulfide, FAD) and 1.437 V (oxidation of FAD, sulfides and hydrosulfides of gold(I)). The calculated rate constants for the electrosolution of gold at the maximum current of the voltammogram is k 1 = 1.15·10–5 cm/s and at the minimum current is k 2 = 3.13·10–6 cm/s in sulfuric solutions of TC. A mechanism is proposed for the electrosolution of gold and TC in sulfuric acid solutions of thiocarbamide.  相似文献   

5.

The interparticle spacing of carboxyl functionalized gold nanoparticles (Au‐COOH) were mediated by rigid crosslinkers, octa(3‐aminopropyl)octasilsesquioxane (POSS‐NH3 +) and poly(amidoamine) dendrimer terminated with hydroxyl groups (PAMAM‐OH), and a flexible polymeric linker, poly(hexanul viologen) (6‐VP). Regular interparticle spacing was achieved by utilizing POSS‐NH3 + and PAMAM‐OH dendrimer as cross linkers, whereas size growth of Au‐COOH was observed featuring no interparticle spacing by utilizing 6‐VP as the crosslinker.  相似文献   

6.
SBA-15表面经嫁接方式引入氨基官能团,与Ni络合制备了SBA-15负载的Ni催化剂(Ni/SBA-15N)。同时,采用传统的浸渍法制备了具有相似Ni负载量的催化剂(Ni/SBA-15)。在负载量相近条件下,Ni/SBA-15N的Ni颗粒分散性均高于Ni/SBA-15。XRD和TPR结果表明,催化剂焙烧后,在氨化SBA-15表面,Ni以硅酸镍形式存在,而在SBA-15表面,Ni以NiO形式存在。Ni/SBA-15对氯苯催化加氢脱氯活性不随Ni负载量的变化而变化;而在Ni/SBA-15N中,Ni负载量增加,催化剂活性增加。  相似文献   

7.
A new method has been developed for the determination of gold based on separation and preconcentration with a microcolumn packed with nanometer TiO2 immobilized on silica gel (immobilized nanometer TiO2) prior to its determination by flame atomic absorption spectrometry. The optimum experimental parameters for preconcentration of gold, such as pH of the sample, sample flow rate and volume, eluent and interfering ions, have been investigated. Gold could be quantitatively retained by immobilized nanometer TiO2 in the pH range of 8-10, then eluted completely with 0.1 mol L−1 HNO3. The detection limit of this method for Au was 0.21 ng mL−1 with an enrichment factor of 50, and the relative standard deviation (R.S.D.) was 1.8% at the 100 ng mL−1 Au level. The method has been applied for the determination of trace amounts of Au in geological and water samples with satisfactory results.  相似文献   

8.
Reaction of MgS, water, and air in sealed gold capsules at 100 to 400°C and0.15 GPa is used to generate an aqueous fluid with very high (20.6 m) H2Scontent and to remobilize significant quantities of native gold as gold sulfides.A combination of X-ray photoelectron and Auger electron spectroscopy (XPS,AES), analytical scanning-electron microscopy (SEM—EDX),electron-micro-probe analysis (EPMA), and calculated solution properties shows that the goldsulfides precipitated during quenching and later perforation of the capsulesrepresent native gold dissolved as Au(I)-bisulfide under the experimental conditions.The equilibrium constant (logK) for the reaction:Au(s) H2S(aq) + HS = Au(HS)2 + 1/2H2(g)ranges from –3.96 ± 0.40 at 115°C to –1.06 ± 0.32 at 400°C; it is in goodagreement with literature values for 25°C and 300–350°C, and varies inverselywith absolute temperature T[–H 0 1/(2.303R)= –2644 ± 33K; r = 1.00]. Themaximum solubility of native gold in this study (29.4 g/kg at 200°C) issignificantly greater than that from published studies on Au(I)-bisulfides and maystimulate interest in developing bisulfides as gold-complexing agents in goldextraction technology.  相似文献   

9.
Rhodium surface siloxide complexes were prepared directly by condensation of the molecular precursors ([{Rh(μ-OSiMe3)(cod)}2], [{Rh(μ-OSiMe3)(tfb)}2], [{Rh(μ-OSiMe3)(nbd)}2]) with silanol groups on silica surface (Aerosil 200 and SBA-15) and their structures were characterized by 13C and 29Si CP/MAS NMR spectroscopy. Such single-site complexes were tested for their activity in hydrosilylation of carbon–carbon double bonds with triethoxysilane, heptamethyltrisiloxane and poly(hydro,methyl)(dimethyl)siloxane. The best catalyst appeared to be cyclooctadiene ligand-containing rhodium siloxide complex immobilized on Aerosil which was recycled as many as 20 times without loss of activity and selectivity in hydrosilylation of vinylheptamethyltrisiloxane with heptamethyltrisiloxane. On the ground of CP/MAS NMR measurements it was established that the mechanism of hydrosilylation catalyzed by silica-supported rhodium siloxide complexes is different from that for the complexes in the homogeneous system.  相似文献   

10.
A biocatalyst was synthesized by immobilizing human carbonic anhydrase onto gold nanoparticles assembled over amine/thiol-functionalized mesoporous SBA-15. The physicochemical properties of the functionalized mesoporous SBA-15 were obtained by XRD, BET, FE SEM, HR TEM, EDS, and zeta potential analysis. The biocatalytic performance was studied for para-nitrophenyl acetate (p-NPA) hydrolysis. The kinetic parameters K(m) were found to be 22.35 and 27.75 mM, and K(cat)/K(m) values were 1514.09 and 1612.25 M(-1) s(-1) for HCA immobilized on gold nanoparticles assembled on amine/thiol-functionalized mesoporous SBA-15 (HCA/Au/APTES/SBA-15 and HCA/Au/MPTES/SBA-15), respectively. These HCA/Au/APTES/SBA-15 and HCA/Au/MPTES/SBA-15 were investigated for biocatalytic hydration of CO(2) and its precipitation as CaCO(3). The amount of CaCO(3) precipitated over HCA/Au/MPTES/SBA-15 was nearly the same as that precipitated over free HCA. Storage stability and reusability studies suggested that HCA/Au/MPTES/SBA-15 retained its activity even after 20 days storage at 25 °C and 20 recycling runs. The present results demonstrate that HCA/Au/MPTES/SBA-15 and HCA/Au/APTES/SBA-15 are highly efficient potential nanobiocatalysts for industrial-scale CO(2) sequestration.  相似文献   

11.
Porous immobilized iminodiacetic acid modified silica of the general formula S—(CH2)3—N(CH2COOH)2, (where S represents [Si—O] n siloxane network) has been prepared by replacement of the iodide in 3-iodopropyl modified silica with diethyliminodiacetate. The immobilized-diethyliminodiacetate ligand system (S-DIDA) was then hydrolyzed by hydrochloric acid to produce the immobilized iminodiacetic acid ligand system (S-IDA). The iodo functionalized modified silica (S-I) was prepared by polycondensation of Si(OEt)4 and (MeO)3Si(CH2)3I. The XPS and CP/MAS 13C NMR spectra showed that not all iodine atoms are replaced and that the hydrolysis of ethyl acetate groups are incomplete upon treatment with HCl. The immobilized iminodiacetic acid ligand system exhibits high potential for the uptake of various di- and trivalent metal ions such as (Mn2+, Fe3+, Co2+, Ni2+, Cu2+ and Zn2+). Complexation of the iminodiacetate ligand system for the metal ions at the optimum conditions was found in the order: Cu2+ > Fe3+ > Ni2+ > Co2+ > Mn2+ > Zn2+. Stability studies of the iminodiacetate ligand system showed that a degradation of the siloxane network and leaching of some species occurred upon treatment with strong acid and base aqueous solutions.  相似文献   

12.
采用三种氨基硅烷试剂(APTS: 3-氨丙基三甲氧基硅烷, TPED: N-(2-氨乙基)-3-氨丙基三甲氧基硅烷, TPDT: 3-[2-(2-氨基乙基氨基)乙基氨基]丙基-三甲氧基硅烷)对介孔SBA-15分子筛进行后嫁接表面功能化(分别记为APTS-SBA-15, TPED-SBA-15和TPDT-SBA-15), 然后利用氨基与氯金酸之间的静电作用及化学还原法, 将金纳米粒子引入分子筛的介孔孔道. 采用N2物理吸附、X射线衍射(XRD)、透射电子显微镜(TEM)、X射线光电子能谱(XPS)等手段对催化剂的结构和电子性质进行了系统表征; 以巴豆醛液相加氢制巴豆醇反应比较了氨基硅烷的种类对催化性能的影响. 结果表明, 氨基硅烷的给电子能力是决定金催化剂上C=O键加氢选择性的主要因素, 氨基硅烷的给电子能力越强, 金活性位上的电子密度越高, 则巴豆醇的选择性和收率就越高.  相似文献   

13.
We report on the behavior of Pt nanoparticles functionalized with 4-mercaptoaniline over-grafted with 2-thiophenecarbonyl chloride. Stable Langmuir–Blodgett (LB) mixed films were built up from these particles with behenic acid (BHA). Such ultra-thin films were transferred onto gold substrates, which allowed the study of their electrochemical response towards Fe[(CN)6]3− and their XPS chemical analysis before and after the BHA removal. After washing, XPS analysis showed that the signals corresponding to the metal core and the capping agent were almost unchanged. Moreover, the layers became more compact, as shown by the Pt/Au intensity ratio decrease, because of the apparent decrease of length escape of electrons coming from gold, evidencing the removal of the fatty acid in the LB film structure. After BHA removal, the resulting electrochemical activity slightly increased. This result, in agreement with XPS analysis, showed the structural rearrangement within the film that facilitated the percolation between the particle domains.  相似文献   

14.
The functionalized polyethylene acrylic acid copolymers Primacor 1430 (P1430, containing 9.5% acrylic acid) and Primacor 5980 (P5980, containing 20% acrylic acid) have been used to synthesize gold/polymer dispersions and gold/polymer ionomers, respectively. When [Ph3PAu]+ is bonded directly to the carboxylate, work-up of the polymer leads to decarboxyation and metallic gold formation. However, ionic bonding of [(Ph3P)2Au]+, and related bis phosphine cations produce workable, foamable polymers. Analysis shows samples from these reactions to contain between 4–15 wt % of Au depending on the type of gold complex used and the reaction conditions. The gold/polymer (ionomer) sample with about 12% Au has been worked to mold sheets of foam. © 1993 John Wiley & Sons, Inc.  相似文献   

15.
A novel electrode was prepared by implanting NH2 + into an ITO film (NH2/ITO). Gold nanoparticles were deposited on the surface of NH2/ITO electrode. The NH2/ITO and Au/NH2/ITO electrodes were used to determine hemoglobin (Hb) immobilized on the electrodes surfaces. The relationship of the reductive peak current value of Hb among different electrodes was: Hb/ITO:Hb/Au/ITO:Hb/NH2/ITO:Hb/Au/NH2/ITO=1:1.5:2:4. The linkage between the –NH2 implanted into ITO film and the –COOH of Hb was recognized to be the reason for the increase of active Hb coverage on NH2/ITO electrode compared with the ITO electrode. Increase of active Hb coverage on Au/NH2/ITO compared with Au/ITO was attributed to the different amount of gold nanoparticles deposited. The determination of Hb at an Au/NH2/ITO electrode was optimized. Calibration curve was obtained over the range of 1.0 × 10−8 – 1.0 × 10−6 mol · L−1 with a detection limit of 1.0 × 10−8 mol · L−1. Results showed that the novel NH2/ITO and Au/NH2/ITO electrodes exhibited good stability, reproducibility besides better electrochemical performance. Correspondence: Jing Bo Hu, Department of Chemistry, Beijing Normal University, Beijing 100875, China  相似文献   

16.
Coinage metal nanoparticles with high dispersion can serve as highly efficient heterogeneous catalysts. However, owing to their low melting point, poor thermal stability remains a major obstacle towards their application under reaction conditions. It is a common practice to use porous inorganic templates such as mesoporous silica SBA-15 to disperse Ag nanoparticles (NPs) against aggregation but their stability is far from satisfactory. Here, we show that the catalytic activity for hydrogenation of dimethyl oxalate (DMO) to methyl glycolate (MG) over Ag NPs dispersed on SBA-15 silica can be further promoted by incorporation of alkali metal ions at small loading, which follows the inverse order of their cationic size: Li+ > Na+ > K+ > Rb+. Among these, 5Ag1–Li0.05/SBA-15 can double the MG yield compared to pristine 5Ag/SBA-15 under identical conditions with superior thermal stability. Akin to the effect of an ionic surfactant on stabilization of a micro-emulsion, the cationic charge of an alkali metal ion can maintain dispersion and modulate the surface valence of Ag NPs. Interstitial Li in the octahedral holes of the face center packed Ag lattice is for the first time confirmed by X-ray pair distribution function and electron ptychography. It is believed that this interstitial-stabilization of coinage metal nanoparticles could be broadly applicable to multi-metallic nanomaterials for a broad range of C–O bond activating catalytic reactions of esters.

Coinage metal nanoparticles with high dispersion can serve as highly efficient heterogeneous catalysts.  相似文献   

17.
Gold–carbene complexes are essential intermediates in many gold‐catalyzed organic‐synthetic transformations. While gold–carbene complexes with direct, vinylogous, or phenylogous heteroatom substitution have been synthesized and characterized, the observation in the condensed phase of electronically non‐stabilized gold–carbenes has so far remained elusive. The sterically extremely shielded, emerald‐green complex [IPr**Au=CMes2]+[NTf2]? has now been synthesized, isolated, and fully characterized. Its absorption maximum at 642 nm, in contrast to 528 nm of the red‐purple carbocation [Mes2CH]+, clearly demonstrates that gold is more than just a “soft proton”.  相似文献   

18.
The reduction of (Ph3P)AuCl with NaBH4 in the presence of HSC(SiMe3)3, leads to one of the largest metalloid gold clusters: Au108S24(PPh3)16 ( 1 ). Within 1 an octahedral Au44 core of gold atoms arranged as in Au metal is surrounded by 48 oxidized Au atoms of an Au48S24 shell, a novel building block in gold chemistry. The protecting Au48S24 shell is completed by additional 16 Au(PPh3) units, leading to a complete protection of the gold core. Within 1 the Au–Au distances get more molecular on going from the center to the ligand shell. Cluster 1 represents novel structural motives in the field of metalloid gold clusters which also are partly typical for metal atoms in metalloid clusters: Mn Rm (n >m ).  相似文献   

19.
Ultrasmall gold nanoclusters consisting of 2-4 Au atoms were synthesized and their performance in electrocatalytic oxygen reduction reactions (ORR) was examined. These clusters were synthesized by exposing AuPPh3Cl to the aqueous ammonia medium for one week. Electrospray ionization mass spectrometry (ESI-MS), X-ray absorption fine structure (XAFS), and X-ray photoelectron spectroscopy (XPS) analyses indicate that the as-synthesized gold clusters (abbreviated as Aux) consist of 2-4 Au atoms coordinated by the triphenylphosphine, hydroxyl, and adsorbed oxygen ligands. A glassy carbon disk electrode loaded with the Aux clusters (Aux/GC) was characterized by the cyclic and linear-sweep voltammetry for ORR. The cyclic voltammogram vs. RHE shows the onset potential of 0.87 V, and the kinetic parameters of JK at 0.47 V and the electron-transfer number per oxygen molecule were calculated to be 14.28 mA/cm2 and 3.96 via the Koutecky-Levich equations, respectively.  相似文献   

20.
Gold in iron ore samples is separated from iron (major matrix cation), antimony and vanadium using anion exchange resin in (0.2 M) HBr, potassium peroxodisulfate and acetone:water:nitric acid media. The exchangeable anion Cl of the ion exchanger Dowex 1X 4 is replaced by Br using (6 M) HBr solution. Certified reference material DGP-M1, spiked ferric magnetic oxide, gold radioactive tracer 198Au and gold standard solutions are used to study the adsorption efficiency and the yield recovery of tetrabromoaurate AuBr4 from the resin. Ten eluents have been tried to elute gold from the column, and it has been found that a 10 ml potassium peroxodisulfate and 240 ml acetone:water:nitric acid [125:5:5] solution fulfills the objective. The set up of the separation procedure allows quantitative adsorption of gold by the resin, while the major matrix cation (Fe) and others (Cd, Ag, Cu, V, Sb, Ti) have been passed through the column with the feeding solution (0.2 M) HBr. The resin selectivity coefficient (K) of separating Au from Fe has been found to be KFeAu≈6.4×1011. The eluted Au is treated with K2S2O8 and H2O2 for spectrophotometric determination as rhodamine-B complex at 555.6 nm. The linearity, detection limit, precision, and accuracy of the determination method have been found to be up to 2.0 μg g−1, 0.018 μg g−1, 0.009 μg g−1 and 3%, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号