首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
The monosaccharide moieties found in heparin (HP) and heparan sulfate (HS), glucosamine and two kinds of uronic acids, glucuronic and iduronic acids, were efficiently synthesized by use of glucosamine hydrochloride and glucurono-6,3-lactone as starting compounds. In the synthesis of the disaccharide building block, the key issues of preparation of uronic acids (glucuronic acid and iduronic acid moieties) were achieved in 12 steps and 15 steps, respectively, without cumbersome C-6 oxidation. The resulting monosaccharide moieties were utilized to the syntheses of HP/HS disaccharide building blocks possessing glucosamine-glucuronic acid (GlcN-GlcA) or iduronic acid (GlcN-IdoA) sequences. The disaccharide building blocks were also suitable for further modification such as glycosylation, selective deprotection, and sulfation.  相似文献   

2.
A general, modular strategy for the first completely stereoselective synthesis of defined heparin oligosaccharides is described. Six monosaccharide building blocks (four differentially protected glucosamines, one glucuronic and one iduronic acid) were utilized to prepare di- and trisaccharide modules in a fully selective fashion. Installation of the alpha-glucosamine linkage was controlled by placing a conformational constraint on the uronic acid glycosyl acceptors thereby establishing a new concept for stereochemical control. Combination of disaccharide modules to form trans-uronic acid linkages was completely selective by virtue of C2 participating groups. Coupling reactions between disaccharide modules exhibited sequence dependence. While the union of many glucosamine uronic acid disaccharide modules did not meet any problems, certain sequences proved not accessible. Elaboration of glucosamine uronic acid disaccharide building blocks to trisaccharide modules by addition of either one additional glucosamine or uronic acid allowed for stereoselective access to oligosaccharides as demonstrated on the example of a hexasaccharide resembling the ATIII-binding sequence. Final deprotection and sulfation yielded the fully synthetic heparin oligosaccharides.  相似文献   

3.
The modular assembly of heparin oligosaccharides requires glucosamine building blocks with amine protecting groups for α-selective glycosylations that can be readily removed. The synthesis of N-4-nitrobenzensulphonamide (nosyl)- and N-2,4-dinitrophenyl (DNP)-protected glucosamine building blocks and their evaluation as glycosylating agents is described. The N-nosyl-protected glucosamine building blocks were challenging to prepare and their glycosylations resulted in inseparable mixtures of products. The N-DNP-protected glucosamines, however, were readily synthesized and resulted in α-selective couplings to protected l-iduronic acid derivatives.  相似文献   

4.
Traditional chemical synthesis of heparin oligosaccharides first involves assembly of the full length oligosaccharide backbone followed by sulfation. Herein, we report an alternative strategy in which the O-sulfate was introduced onto glycosyl building blocks as a trichloroethyl ester prior to assembly of the full length oligosaccharide. This allowed divergent preparation of both sulfated and non-sulfated building blocks from common advanced intermediates. The O-sulfate esters were found to be stable during glycosylation as well as typical synthetic manipulations encountered during heparin oligosaccharide synthesis. Furthermore, the presence of sulfate esters in both glycosyl donors and acceptors did not adversely affect the glycosylation yields, which enabled us to assemble multiple heparin oligosaccharides with preinstalled 6-O-sulfates.  相似文献   

5.
Heparin (HP) and heparan sulfate (HS) play important roles in many biological events. Increasing evidence has shown that the biological functions of HP and HS can be critically dependent upon their precise structures, including the position of the iduronic acids and sulfation patterns. However, unraveling the HP code has been extremely challenging due to the enormous structural variations. To overcome this hurdle, we investigated the possibility of assembling a library of HP/HS oligosaccharides using a preactivation‐based, one‐pot glycosylation method. A major challenge in HP/HS oligosaccharide synthesis is stereoselectivity in the formation of the cis‐1,4‐linkages between glucosamine and the uronic acid. Through screening, suitable protective groups were identified on the matching glycosyl donor and acceptor, leading to stereospecific formation of both the cis‐1,4‐ and trans‐1,4‐linkages present in HP. The protective group chemistry designed was also very flexible. From two advanced thioglycosyl disaccharide intermediates, all of the required disaccharide modules for library preparation could be generated in a divergent manner, which greatly simplified building‐block preparation. Furthermore, the reactivity‐independent nature of the preactivation‐based, one‐pot approach enabled us to mix the building blocks. This allowed rapid assembly of twelve HP/HS hexasaccharides with systematically varied and precisely controlled backbone structures in a combinatorial fashion. The speed and the high yields achieved in glycoassembly without the need to use a large excess of building blocks highlighted the advantages of our approach, which can be of general use to facilitate the study of HP/HS biology. As a proof of principle, this panel of hexasaccharides was used to probe the effect of backbone sequence on binding with the fibroblast growth factor‐2 (FGF‐2). A trisaccharide sequence of 2‐O‐sulfated iduronic acid flanked by N‐sulfated glucosamines was identified to be the minimum binding motif and N‐sulfation was found to be critical. This provides useful information for further development of more potent compounds towards FGF‐2 binding, which can have potential applications in wound healing and anticancer therapy.  相似文献   

6.
Two pentasaccharide sulfonic acids that were related to the antithrombin-binding domain of heparin were prepared, in which two or three primary sulfate esters were replaced by sodium-sulfonatomethyl moieties. The sulfonic-acid groups were formed on a monosaccharide level and the obtained carbohydrate sulfonic-acid esters were found to be excellent donors and acceptors in the glycosylation reactions. Throughout the synthesis, the hydroxy groups to be methylated were masked in the form of acetates and the hydroxy groups to be sulfated were masked with benzyl groups. The disulfonic-acid analogue was prepared in a [2+3] block synthesis by using a trisaccharide disulfonic acid as an acceptor and a glucuronide disaccharide as a donor. For the synthesis of the pentasaccharide trisulfonic acid, a more-efficient approach, which involved elongation of the trisaccharide acceptor with a non-oxidized precursor of the glucuronic acid followed by post-glycosidation oxidation at the tetrasaccharide level and a subsequent [1+4] coupling reaction, was elaborated. In vitro evaluation of the anticoagulant activity of these new sulfonic-acid derivatives revealed that the disulfonate analogue inhibited the blood-coagulation-proteinase factor?Xa with outstanding efficacy; however, the introduction of the third sulfonic-acid moiety resulted in a notable decrease in the anti-Xa activity. The difference in the biological activity of the disulfonic- and trisulfonic-acid counterparts could be explained by the different conformation of their L-iduronic-acid residues.  相似文献   

7.
The polysaccharide composition in sporophylls of the brown alga Alaria marginata enriched with laminaran and sulfated polysaccharides was studied. It was shown that laminaran molecules had an average degree of polymerization about 30 and consisted mainly of 3-linked β-D-glucopyranose residues, having no more than 10% of 1→6 linkages. The majority of chains (about 60%) were terminated at "reducing" end by mannitol residue. Alginic acid of sporophylls contained mannuronic (M) and guluronic (G) acids residues distributed along the linear polymer molecules as MM, MG, and GG blocks at a ratio of 4: 1: 1. Fucoidan was found to be composed of fucose, galactose, and sulfate as the major constituents, while xylose, mannose, glucuronic acid, and acetate were the minor components. It was shown that fucoidan contained two major components: fucan sulfate, molecules of which are built up of 3-linked fucopyranose residues with branches and sulfate groups at different positions, and fucogalactan, also containing chains of 3-linked fucopyranose residues with branches at positions 4 together with highly branched galactan chains terminated by fucose residues. The fucoidan contained also sulfated glucuronomannan and sulfated glucuronan as minor components.  相似文献   

8.
An efficient de novo synthesis of uronic acid building blocks is described. The synthetic strategy relies on the stereoselective elongation of thioacetal protected dialdehydes 12 a and 17. The dialdehydes are prepared from D-xylose, a cheap and commercially available source. A highly stereoselective MgBr(2)OEt(2)-mediated Mukaiyama aldol addition to C4-aldehyde 12 a is performed to obtain D-glucuronic acid building block 16, whereas L-iduronic acid building block 22 is prepared by MgBr(2)OEt(2)-mediated cyanation of C5-aldehyde 17. Synthesis of a heparin disaccharide demonstrates the utility of the de novo strategy for the assembly of glycosaminoglycan oligosaccharides.  相似文献   

9.
Bi-functional dendritic building blocks for convergent dendrimer growth were successfully synthesized from phenolic templates in the solid phase via a Mitsunobu reaction. Each arm of the dendron building block carries an orthogonally protected secondary amine along the arm, and a peripheral primary amine or phenol group (building block type 1) or a tertiary amine junction with orthogonally protected peripheral primary amine or carboxyl groups (building block type 2). The synthetic routes reported in this work are general and applicable for the preparation of diverse building blocks, controlling protection, arm length, and peripheral moieties. These novel dendron units can form unusual dendritic architectures by solid-phase chemistry, which may be incorporated into specific complex structures expanding the scope of dendrimer science.  相似文献   

10.
The glycosaminoglycan (GAG) heparin is a polyanionic sulfated polysaccharide most recognized for its anticoagulant activity. In the present study, the GAGs were extracted from bivalve mollusc Amussium pleuronectus. The crude GAGs were fractionated by ion-exchange (DEAE-cellulose and Amberlite IRA-900 & 120) chromatography. The recovered active fractions (as determined by metachromatic assay) were confirmed by agarose gel electrophoresis and the active fractions were purified in Sephadex G-100 column. Fractionated and purified GAG molecular weight was determined through gradient polyacrylamide gel electrophoresis. The structural characterization of low molecular weight GAG was analyzed by Fourier transform infrared spectroscopy. The activated partial thromboplastin time of purified GAG is 95 IU/mg and has molecular weight 6,500–7,500 Da. The disaccharide compositional analysis on the GAG sample was sulfated like porcine intestinal mucosal heparan sulfate, and it contains equivalent amount of uronic acid and hexosamine. The results of this study suggest that the GAG from A. pleuronectus could be an alternative source of heparin.  相似文献   

11.
Two pentasaccharide sulfonic acids that were related to the antithrombin‐binding domain of heparin were prepared, in which two or three primary sulfate esters were replaced by sodium‐sulfonatomethyl moieties. The sulfonic‐acid groups were formed on a monosaccharide level and the obtained carbohydrate sulfonic‐acid esters were found to be excellent donors and acceptors in the glycosylation reactions. Throughout the synthesis, the hydroxy groups to be methylated were masked in the form of acetates and the hydroxy groups to be sulfated were masked with benzyl groups. The disulfonic‐acid analogue was prepared in a [2+3] block synthesis by using a trisaccharide disulfonic acid as an acceptor and a glucuronide disaccharide as a donor. For the synthesis of the pentasaccharide trisulfonic acid, a more‐efficient approach, which involved elongation of the trisaccharide acceptor with a non‐oxidized precursor of the glucuronic acid followed by post‐glycosidation oxidation at the tetrasaccharide level and a subsequent [1+4] coupling reaction, was elaborated. In vitro evaluation of the anticoagulant activity of these new sulfonic‐acid derivatives revealed that the disulfonate analogue inhibited the blood‐coagulation‐proteinase factor Xa with outstanding efficacy; however, the introduction of the third sulfonic‐acid moiety resulted in a notable decrease in the anti‐Xa activity. The difference in the biological activity of the disulfonic‐ and trisulfonic‐acid counterparts could be explained by the different conformation of their L ‐iduronic‐acid residues.  相似文献   

12.
The tetrafunctionalized AB3-type porphyrin building blocks containing two different types of functional groups with N4, N3O, N3S, and N2S2 porphyrin cores were synthesized by following various synthetic routes. The AB3-type tetrafunctionalized N4 porphyrin building block was synthesized by a mixed condensation approach, the N3S and N3O porphyrin building blocks by a mono-ol method, and N2S2 porphyrin building block by an unsymmetrical diol method. The tetrafunctionalized porphyrin building blocks were used to synthesize monofunctionalized porphyrin tetrads containing two different types of porphyrin subunits by coupling of 1 equiv of tetrafunctionalized N4, N3O, N3S, and N2S2 porphyrin building block with 3 equiv of monofunctionalized ZnN4 porphyrin building block under mild copper-free Pd(0) coupling conditions. The monofunctionalized porphyrin tetrads were used further to synthesize unsymmetrical porphyrin pentads containing three different types of porphyrin subunits by coupling 1 equiv of monofunctionalized porphyrin tetrad with 1 equiv of monofunctionalized N2S2 porphyrin building blocks under the same mild Pd(0) coupling conditions. The NMR, absorption, and electrochemical studies on porphyrin tetrads and porphyrin pentads indicated that the monomeric porphyrin subunits in tetrads and pentads retain their individual characteristic features and exhibit weak interaction among the porphyrin subunits. The steady state and time-resolved fluorescence studies support an efficient energy transfer from donor porphyrin subunit to acceptor porphyrin subunit in unsymmetrical porphyrin tetrads and porphyrin pentads.  相似文献   

13.
The total syntheses of several complex oligosaccharide moieties that occur in the core structure of sulfated mucins are reported. A trisaccharide acceptor was obtained through regio- and stereoselective sialylation of methyl (6-O-pivaloyl-beta-D-galactopyanosyl)(1-->3)-4,6-O-benzylidene-2-a cetamido-2-deoxy-alpha-D-galactopyranoside with a novel sialyl donor. A tetrasaccharide, pentasaccharide, and hexasaccharide were constructed in predictable and controlled manner with high regio- and stereoselectivity after the successful preparation and employment of a disaccharide donor, trisaccharide donor, disaccharide acceptor, and trisaccharide acceptor building blocks. Finally, a mild oxidative cleaving method was adopted for the selective removal of 2-naphthylmethyl (NAP) in the presence of benzyl groups.  相似文献   

14.
Hyaluronan (HA) is a natural polysaccharides which has no sulfated group but high molecular weight in comparison with other glycosaminoglycans (GAGs). Previously it has been cleared up that the cell function of human keratinocytes is affected by S‐HA (HA substituted with sulfated groups). Most biomedical materials contact with blood components, proteins, cells, etc. In this study, the interaction between S‐HA and blood components is discussed, that is, plasma proteins. And the application of S‐HA for new analytical and separation method of some proteins is pointed out. None of the proteins were adsorbed to HA. Fibronectin and fibinogen were adsorbed to S‐HA, but immunoglobulin‐G and insulin were not adsorbed to it as well as heparin. However, albumin could interact only with heparin, and it did not interact with S‐HA. Furthermore S‐HA adsorbed the plasma proteins that did not adsorb to heparin. It is clear that S‐HA showed different interaction with the plasma proteins in comparison with natural sulfated polysaccharides. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

15.
The Michael addition of ketone-derived enamines, metalated methylene active compounds and N-methyl pyrroles to γ-fluoro-α-nitroalkenes provided in moderate to good isolated yields the corresponding β-fluoroalkyl nitro compounds, which represent new interesting, highly functionalized building blocks in organofluorine chemistry.  相似文献   

16.
《Mendeleev Communications》2021,31(5):573-583
Methods for the preparation of two highly flexible synthetic building blocks, namely pyrrole/aminoenone and pyrrole/aminoacrylonitrile ensembles, on the basis of available starting materials such as 2-acylethynylpyrroles or pyrrole-2-carbodithioates, are summarized. The presence of several reactive centers in their molecules (pyrrole ring, enamine and carbonyl or nitrile moieties) ensures their multiple reactivity and application as versatile intermediates in the synthesis of heterocyclic ensembles such as pyrrolyl pyridines, bipyrroles, pyrrolyl-isoxazoles and condensed compounds, such as pyrrolo[3,2-a]pyrazines, pyrrolizines, which have high potential for use in medical chemistry and materials science.  相似文献   

17.
A multivariate calibration method for the characterization of heparin samples based on the analysis of (1)H nuclear magnetic resonance (NMR) spectral data is proposed. Heparin samples under study consisted of two-component or four-component mixtures of heparins from porcine, ovine and bovine mucosae and bovine lung. Although the (1)H NMR spectra of all heparin types were highly overlapping, each origin showed some particular features that could be advantageously used for the quantification of the components. These features mainly concerned the anomeric H, which appeared in the range 5.0-5.7 ppm and the peaks of acetamidomethyl protons at 2.0-2.1 ppm. The determination of the percentage of each heparin class depended on these differences and was carried out using partial least squares regression (PLS) as a calibration method. Prior to the PLS analysis, the spectral data were standardized using the internal standard peak (sodium 4,4-dimethyl-4-silapentanoate- 2,2,3,3- d (4), TSP) as the reference. The quantification of each heparin type in the samples using PLS models built with 4 or 5 components was satisfactory, with an overall prediction error ranging from 3% to 10%.  相似文献   

18.
Heparin is a sulfated glycosaminoglycan isolated from animal organs that has been used clinically as an antithrombotic agent since the 1940s. In the early 1980s it was discovered that a unique pentasaccharide domain in some heparin chains activates antithrombin III (AT-III), a serine protease inhibitor that blocks thrombin and factor Xa in the coagulation cascade. Sanofi-Synthélabo and Organon developed a synthetic analogue of this pentasaccharide. The resulting antithrombotic drug arixtra, which went on the market in the USA and Europe in 2002, shows superior antithrombotic activity and brings about AT-III-mediated activity against factor Xa exclusively. Structure-based design has subsequently led to analogues with longer-lasting activity, such as idraparinux, as well as novel conjugates and long oligosaccharides with specific anti-Xa and antithrombin activities. The new drug candidates are more selective in their mode of action than heparin and less likely to induce thrombocytopenia.  相似文献   

19.
Fondaparinux, a synthetic pentasaccharide based on the heparin antithrombin‐binding domain, is an approved clinical anticoagulant. Although it is a better and safer alternative to pharmaceutical heparins in many cases, its high cost, which results from the difficult and tedious synthesis, is a deterrent for its widespread use. The chemical synthesis of fondaparinux was achieved in an efficient and concise manner from commercially available D ‐glucosamine, diacetone α‐D ‐glucose, and penta‐O‐acetyl‐D ‐glucose. The method involves suitably functionalized building blocks that are readily accessible and employs shared intermediates and a series of one‐pot reactions that considerably reduce the synthetic effort and improve the yield.  相似文献   

20.
A highly convergent, scalable synthesis of the rebeccamycin analog 2 was demonstrated in seven steps and 31% overall yield based on the N-protected building block dibromomaleimide 7. The practical synthesis of other two building blocks, 5,6-difluoro-3-benzothiopheneboronic acid 6 and 5,6-difluoroindole 8, is described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号