首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The phenolic components of Aronia melanocarpa were quantitatively recovered by three successive extractions with methanol. They comprise anthocyanins (mainly cyanidin glycosides) phenolic acids (chlorogenic and neochlorogenic acids) and flavonols (quercetin glycosides). Approximately 30% of the total phenolic compounds are located in the peel and the rest in the flesh and seeds. Peels contain the major part of anthocyanins (73%), while the flesh contains the major part of phenolic acids (78%). Aronia juice, rich in polyphenols, was obtained by mashing and centrifugation, while the pomace residue was dried and subjected to acidified water extraction in a fixed bed column for the recovery of residual phenolics. A yield of 22.5 mg gallic acid equivalents/g dry pomace was obtained; however, drying caused anthocyanins losses. Thus, their recovery could be increased by applying extraction on the wet pomace. The extract was encapsulated in maltodextrin and gum arabic by spray drying, with a high (>88%) encapsulation yield and efficiency for both total phenols and anthocyanins. Overall, fresh aronia fruits are a good source for the production of polyphenol-rich juice, while the residual pomace can be exploited, through water extraction and spray drying encapsulation for the production of a powder containing anthocyanins that can be used as a food or cosmetics additive.  相似文献   

2.
This study develops an innovative cell-based carrier to simultaneously encapsulate multiple phytochemicals from a complex plant source. Muscadine grapes (MG) juice prepared from fresh fruit was used as a model juice. After incubation with inactivated bacterial cells, 66.97% of the total anthocyanins, and 72.67% of the total antioxidant compounds were encapsulated in the cells from MG juice. Confocal images illustrated a uniform localization of the encapsulated material in the cells. The spectral emission scans indicated the presence of a diverse class of phenolic compounds, which was characterized using high-performance liquid chromatography (HPLC). Using HPLC, diverse phytochemical compound classes were analyzed, including flavanols, phenolic acid, hydroxycinnamic acid, flavonols, and polymeric polyphenols. The analysis validated that the cell carrier could encapsulate a complex profile of bioactive compounds from fruit juice, and the encapsulated content and efficiencies varied by the chemical class and compound. In addition, after the heat treatment at 90 °C for 60 min, >87% total antioxidant capacity and 90% anthocyanin content were recovered from the encapsulated MG. In summary, these results highlight the significant potential of a selected bacterial strain for simultaneous encapsulation of diverse phenolic compounds from fruit juice and improving their process stability.  相似文献   

3.
Betalains are powerful antioxidants contained in beets. These are divided into betacyanins (red-violet) and betaxanthins (yellow-orange), and they can be used as natural colorants in the food industry. The effects of freeze-drying pure beet juice (B) and the encapsulation of beet juice with a dextrose equivalent (DE) 10 maltodextrin (M) and agave inulin (I) as carrier agents were evaluated. The powders showed significant differences (p < 0.05) in all the variables analyzed: water absorption index (WAI), water solubility index (WSI), glass transition temperature (Tg), total betalains (TB), betacyanins (BC), betaxanthins (BX), total polyphenols (TP), antioxidant activity (AA, via 2,2’-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)) (ABTS), and 2,2-diphenyl-1-picrylhydrazyl (DPPH)) and total protein concentration (TPC). The highest values of antioxidant activity were found in the non-encapsulated beet powder, followed by the powder encapsulated with maltodextrin and, to a lesser extent, the powder encapsulated with inulin. The glass transition temperature was 61.63 °C for M and 27.59 °C for I. However, for B it was less than 18.34 °C, which makes handling difficult. Encapsulation of beet extract with maltodextrin and inulin by lyophilization turned out to be an efficient method to increase solubility and diminish hygroscopicity.  相似文献   

4.
Processing technique and storage conditions are the main factors that affect the phytochemical profile of Not-from-Concentrate (NFC) juice, which could decrease the nutritional and bioactive properties of the corresponding juice. The aim of this study was to evaluate the quality changes that occurred in NFC mango juice after Ohmicsonication (OS) and during storage in comparison to other processing methods such as sonication (S), thermosonication (TS), ohmic heating (OH), and conventional heating (CH). Quality attributes such as polyphenoloxidase (PPO) and pectinmethylesterase (PME) activities, ascorbic acid and hydroxymethyl furfural (HMF) contents, total phenolics, total flavonoids, total carotenoids, electric conductivity, color values and microbial load (total plate count, mold, yeast, and psychrophilic bacteria) were examined. OS and OH treatments demonstrated the highest inactivation of PPO (100%), while CH and TS displaying inhibitions 89% and 90%, respectively and only S treatment exhibited insufficient inactivation of both PPO and microbial load. However, the inhibition of PME followed the order OS (96.5%) > OH (94.9%) > TS (92.5%) > CH (88.5%). The best treatment, with the highest retention of phytochemical contents (ascorbic acid, total carotenoids, antioxidant activity, total flavonoids, and total phenolic content) for NFC mango juice and during storage was obtained with OS treated samples compared to other treatments (in the order from the lowest to highest percentage, OS < OH < TS < CH). Consequently, the results indicated that OS could be applied as a new mild thermal treatment in the production of mango juice with improved quality properties of stored NFC mango juice.  相似文献   

5.
The chemical composition and biological capacities of berries depend on environmental parameters, maturity, and location. The Andean blueberry (Vaccinium floribundum Kunth), also known as mortiño, presents a unique combination of several phytochemicals, which play a synergistic role in its characterization as a functional food. We aimed to expose the possible variations that exist in the profile of the phenolic compounds as well as the antioxidant and antimicrobial capacity of the wild Andean blueberry with respect to three ripeness stages and two different altitudes. We found that polyphenols are the predominant compounds in the berry during the early ripeness stage and are the main bioactive compounds that give rise to the antioxidant capacity and inhibition effect on the growth of gram-positive and gram-negative bacteria. Moreover, the accumulation of ascorbic acid, free amino acids, and anthocyanins increases as the ripening process progresses, and they were the main bioactive compounds in the ripe berry. The latter compounds influence the production of the typical bluish or reddish coloration of ripe blueberries. In addition, it was determined that environmental conditions at high altitudes could have a positive influence in all cases. Overall, our data provide evidence regarding the high functional value of the wild Andean blueberry.  相似文献   

6.
Although the health benefits of cornflower extracts are known, their application in food production has not been widely investigated. This study assessed microencapsulated red powders (RP) prepared from the aqueous extract of blue cornflower petals. Microencapsulation was performed by freeze-drying using various stabilizers, such as maltodextrin, guar gum, and lecithin. The microencapsulated RP were characterized by spectral (FT-IR and FT-Raman), mineral, structural, and antioxidant analyses. The FT-IR and FT-Raman band related to guar gum, lecithin, and maltodextrin dominated over the band characteristic of anthocyanins present in the cornflower petal powders. The main difference observed in the FT-Raman spectra was attributed to a shift of bands which is reflection of appearance of flavium cation forms of anthocyanins. The microencapsulated RP had total phenolic content of 21.6–23.4 mg GAE/g DW and total flavonoid content of 5.0–5.23 mg QE/g. The ABTS radical scavenging activity of the tested powders ranged from 13.8 to 20.2 EC50 mg DW/mL. The reducing antioxidant power (RED) of the powders was estimated at between 31.0 and 38.7 EC50 mg DW/mL, and OH scavenging activity ranged from 1.9 to 2.6 EC50 mg DW/mL. Microencapsulated cornflower RP can be valuable additives to food such as sweets, jellies, puddings, drinks, or dietary supplements.  相似文献   

7.
Blueberry wine residues produced during the wine-brewing process contain abundant anthocyanins and other bioactive compounds. To extract anthocyanins from blueberry wine residues more efficiently, a novel procedure of ultrasound-assisted deep eutectic solvent extraction (UADESE) was proposed in this work. The extraction process was optimized by response surface methodology coupled with genetic algorithm. The optimum extraction parameters to achieve the highest yield of anthocyanins (9.32 ± 0.08 mg/g) from blueberry wine residues by UADESE were obtained at water content of 29%, ultrasonic power of 380 W, extraction temperature of 55 °C, and extraction time of 40 min. The AB-8 macroporous resin combined with Sephadex LH-20 techniques was used to purify the crude extract (CE) obtained under optimum extraction conditions and analyze the anthocyanins composition by HPLC-ESI-MS/MS. The cyanidin-3-rutinoside with purity of 92.81% was obtained. The HepG2 antitumor activity of CE was better than that of the purified anthocyanins component. Moreover, CE could increase the intracellular reactive oxygen species levels and the apoptosis, and arrest HepG2 cells in the S phases. These findings provided an effective and feasible method for anthocyanins extraction, and reduced the environmental burden of this waste.  相似文献   

8.
Two multi-functional powders, in terms of anthocyanins from black rice (Oryza sativa L.) and lactic acid bacteria (Lactobacillus paracasei, L. casei 431®) were obtained through co-microencapsulation into a biopolymer matrix composed of milk proteins and inulin. Two extracts were obtained using black rice flour as a raw material and hot water and ethanol as solvents. Both powders (called P1 for aqueous extract and P2 for ethanolic extract) proved to be rich sources of valuable bioactives, with microencapsulation efficiency up to 80%, both for anthocyanins and lactic acid bacteria. A higher content of anthocyanins was found in P1, of 102.91 ± 1.83 mg cyanindin-3-O-glucoside (C3G)/g dry weight (DW) when compared with only 27.60 ± 17.36 mg C3G/g DW in P2. The morphological analysis revealed the presence of large, thin, and fragile structures, with different sizes. A different pattern of gastric digestion was observed, with a highly protective effect of the matrix in P1 and a maximum decrease in anthocyanins of approximatively 44% in P2. In intestinal juice, the anthocyanins decreased significantly in P2, reaching a maximum of 97% at the end of digestion; whereas in P1, more than 45% from the initial anthocyanins content remained in the microparticles. Overall, the short-term storage stability test revealed a release of bioactive from P2 and a decrease in P1. The viable cells of lactic acid bacteria after 21 days of storage reached 7 log colony forming units (CFU)/g DW.  相似文献   

9.
Experiments detailing the spray drying of fruit and vegetable juices are necessary at the experimental scale in order to determine the optimum drying conditions and to select the most appropriate carriers and solution formulations for drying on the industrial scale. In this study, the spray-drying process of beetroot juice concentrate on a maltodextrin carrier was analyzed at different dryer scales: mini-laboratory (ML), semi-technical (ST), small industrial (SI), and large industrial (LI). Selected physicochemical properties of the beetroot powders that were obtained (size and microstructure of the powder particles, loose and tapped bulk density, powder flowability, moisture, water activity, violet betalain, and polyphenol content) and their drying efficiencies were determined. Spray drying with the same process parameters but at a larger scale makes it possible to obtain beetroot powders with a larger particle size, better flowability, a color that is more shifted towards red and blue, and a higher retention of violet betalain pigments and polyphenols. As the size of the spray dryer increases, the efficiency of the process expressed in powder yield also increases. To obtain a drying efficiency >90% on an industrial scale, process conditions should be selected to obtain an efficiency of a min. of 50% at the laboratory scale or 80% at the semi-technical scale. Designing the industrial process for spray dryers with a centrifugal atomization system is definitely more effective at the semi-technical scale with the same atomization system than it is at laboratory scale with a two-fluid nozzle.  相似文献   

10.
To improve the phenolic extraction and color stability of red wine made from cold-hardy grapes, two winemaking practices, saignée and bentonite, were applied separately and in combination on Marquette grapes at crushing. The effects of these winemaking strategies on Marquette wine’s basic chemical properties, monomeric and polymeric phenolic compounds were studied, as well as the development of color characteristics from crushing to 5 months of aging. The saignée (9% juice run-off) treatment showed little impact on the phenolic content of the finished wine, but showed an increase in color intensity. A hue shift towards an orange-yellow tone was observed in the bentonite-treated wines, which was associated with a loss of monomeric anthocyanins. The combination of saignée and bentonite showed less impact on removing anthocyanins and wine color, and increased phenolics content, therefore improving the extraction of non-anthocyanins monomeric phenolics. Although this combination treatment led to the highest concentration of tannin content after pressing, this difference between the control and other treatments disappeared over time. These results suggested that the interactions between tannins and other wine compounds still occur after removing proteins in Marquette wines.  相似文献   

11.
Fresh juice from bergamot (Citrus bergamia Risso) has been studied to evaluate the polyphenolic composition by HPLC-DAD analysis and total polyphenols content by UV method. The main constituent, Naringin, has been selected as analytical and biological marker of the juice. Juice has been loaded onto maltodextrin matrix by spray-drying. The produced maltodextrin/juice powder (BMP) showed neither significant change in total polyphenols content nor decrease in antioxidant properties with respect to fresh juice. Moreover, BMP displayed high in vitro dissolution rate of the bioactive constituents in water and in simulated biological fluids. BMP appears as promising functional raw material for food, nutraceutical and pharmaceutical products. With this aim, a formulation study to develop tablets (BMT) for oral administration has been also performed. The produced solid oral dosage form preserved high polyphenols content, showed complete disaggregation in few minutes and satisfying dissolution rate of the bioactive constituents in simulated biological fluids.  相似文献   

12.
Tamarillo fruit contains many phytochemicals that have beneficial therapeutic and nutritional properties. Spray-drying is widely used to preserve fruit puree in powder form. However, to obtain high-quality fruit powder, the optimisation of spray-drying conditions is necessary, as a high drying temperature can damage sensitive bioactive compounds. This study investigated the effects of spray-drying on the microstructure, polyphenolics, total flavonoids, total carotenoids, antioxidant activity, and anticancer capacity of tamarillo powder. Response surface methodology (RSM) was used to optimise the spray-drying process to produce tamarillo powder. The independent variables were inlet drying temperature (120–160 °C), flow rate (1–5 g/mL), and maltodextrin concentration (0–10%). These variables influenced the microstructural attributes, bioactive components, and cytotoxicity of the spray-dried tamarillo powder. The increase in polyphenols and antioxidant activities were favoured under high-temperature spray drying conditions and a low carrier concentration. The optimised spray-drying conditions for producing tamarillo powder with high antioxidant and anticancer activities, high yield, and stable bioactive compounds were found to be at 146.8 °C inlet temperature, and a flow rate of 1.76 g/mL.  相似文献   

13.
This research presents the microencapsulation and conservation of antioxidants of broccoli juice processed by spray drying, and proposes the use of a by-product as a technological application. Broccoli juice (BJ) extracted from two sources, stalks and florets, was spray-dried employing maltodextrin (MX) as a carrier agent at concentrations of 5, 7.5, and 10%, and inlet temperatures of 150 and 220 °C. The total phenolic content (TPC), and antioxidant activity (AA) of the BJ-MX powders were determined together with the physicochemical characteristics, including particle morphology, microstructure, and thermal properties. Based on the TPC and AA, the optimal processing conditions found were 5% of MX and a drying temperature of 220 °C. However, the florets showed higher TPC, while stalks presented higher AA under those processing conditions. The particles exhibited micrometric sizes and a mixture of spherical-shape particles and pseudo-spherical particles. The diffractograms indicated an amorphous microstructure in all samples. The glass transition temperature (Tg) was determined in the range of 50 °C for the samples dried at 150 °C and 55 °C for those dried at 220 °C. This suggested that powders might be stored at temperatures below the Tg without presenting any loss of antioxidants.  相似文献   

14.
Most of the health benefits derived from cereals are attributed to their bioactive compounds. This study evaluated the levels of the bioactive compounds, and the antioxidant and starch-hydrolyzing enzymes inhibitory properties of six pipeline Striga-resistant yellow-orange maize hybrids (coded AS1828-1, 4, 6, 8, 9, 11) in vitro. The maize hybrids were grown at the International Institute of Tropical Agriculture (IITA), Nigeria. The bioactive compounds (total phenolics, tannins, flavonoids, and phytate) levels, antioxidant (DPPH and ABTS•+ scavenging capacity and reducing power) and starch-hydrolyzing enzymes (α-amylase and α-glucosidase) inhibitory activities of the maize hybrids were determined by spectrophotometry. At the same time, carotenoids were quantified using a reverse-phase HPLC system. The ranges of the bioactive compounds were: 11.25–14.14 mg GAE/g (total phenolics), 3.62–4.67 mg QE/g (total flavonoids), 3.63–6.29 mg/g (tannins), 3.66–4.31% (phytate), 8.92–12.11 µg/g (total xanthophylls), 2.42–2.89 µg/g (total β-carotene), and 3.17–3.77 µg/g (total provitamin A carotenoids). Extracts of the maize hybrids scavenged DPPH (SC50: 9.07–26.35 mg/mL) and ABTS•+ (2.65–7.68 TEAC mmol/g), reduced Fe3+ to Fe2+ (0.25 ± 0.64–0.43 ± 0.01 mg GAE/g), and inhibited α-amylase and α-glucosidase, with IC50 ranges of 26.28–52.55 mg/mL and 47.72–63.98 mg/mL, respectively. Among the six clones of the maize hybrids, AS1828-9 had the highest (p < 0.05) levels of tannins and phytate and the strongest antioxidant and starch-hydrolyzing enzymes inhibitory activities. Significant correlations were observed between total phenolics and the following: ABTS•+ (p < 0.01, r = 0.757), DPPH SC50 (p < 0.01, r = −0.867), reducing power (p < 0.05, r = 0.633), α-amylase IC50 (p < 0.01, r = −0.836) and α-glucosidase IC50 (p < 0.05, r = −0.582). Hence, the Striga-resistant yellow-orange maize hybrids (especially AS1828-9) may be beneficial for alleviating oxidative stress and postprandial hyperglycemia.  相似文献   

15.
Blackcurrant juice (Ribes nigrum L.) was subjected to supercritical carbon dioxide (SCCD) at 10, 30, and 60 MPa for 10 min at 45 °C, as well as thermally treated at 45 and 85 °C for 10 min to determine the stability, antioxidant capacity (AC), and bioaccessibility (BAc) of vitamin C, total anthocyanins, and their individual monomers. An in vitro gastrointestinal digestion model completed with dialysis was used to assess BAc. The use of SCCD at each of the pressures applied improved the stability of vitamin C, total anthocyanins, and AC before in vitro digestion. As a result of digestion, the total content of vitamin C, anthocyanins, and AC decreased. The highest BAc of vitamin C was noted in fresh juice (FJ) (40%) and after mild heat treatment at 45 °C (T45) (46%). The highest BAc of total anthocyanins was also noted in the FJ (4.4%). The positive effect of the application of SCCD on the BAc of the delphinidin-3-O-glycosides was observed compared to T45 and thermal pasteurization at 85 °C (T85). Although SCCD did not significantly improve the BAc of vitamin C and total anthocyanins, the higher AC of SCCD samples after intestinal digestion (ABTS+• and DPPH•) and in dialysate (ABTS+•) compared to thermally treated was observed. The protocatechuic acid was detected by UPLC-PDA-MS/MS as the major metabolite formed during the digestion of delphinidin-3-O-rutinoside. This may indicate the influence of SCCD on improvement of the accessibility of antioxidants for digestion, thanks to which more metabolites with high antioxidant activity were released.  相似文献   

16.
The present study investigated the nutrients, biologically-active compounds, as well as antioxidant and anti-lipase activities of chokeberry fruits across four different stages of development, from the unripe green to mature black forms. The highest content of total phenolics (12.30% dry weight (DW)), including proanthocyanidins (6.83% DW), phenolic acids (6.57% DW), flavanols (0.56% DW), flavonols (0.62% DW), and flavanones (0.10% DW), was observed in unripe fruits. The unripe green fruits were also characterized by the highest content of protein (2.02% DW), ash (4.05% DW), total fiber (39.43% DW), and chlorophylls (75.48 mg/100 g DW). Ripe black fruits were the richest source of total carotenoids (8.53 mg/100 g DW), total anthocyanins (2.64 g/100 g DW), and total sugars (33.84% DW). The phenolic compounds of green fruits were dominated by phenolic acids (above 83% of the total content), the semi-mature fruits by both phenolic acids and anthocyanins (90%), while the mature berries were dominated by anthocyanins (64%). Unripe fruits were the most effective inhibitor of pancreatic lipase in triolein emulsion, scavenger of 2,2’-azinobis-(3-ethylbenzothiazolin-6-sulfonic acid) radical cation, and reducer of ferric ion. Biological activities were mainly correlated with total proanthocyanidins and total phenolics. Considering their strong anti-lipase and antioxidant activities, unripe chokeberry fruits may have potential applications in nutraceuticals and functional foods.  相似文献   

17.
Olives (Olea europaea L.) are a significant part of the agroindustry in China. Olive leaves, the most abundant by-products of the olive and olive oil industry, contain bioactive compounds that are beneficial to human health. The purpose of this study was to evaluate the phytochemical profiles and antioxidant capacities of olive leaves from 32 cultivars grown in China. A total of 32 phytochemical compounds were identified using high-performance liquid chromatography–electrospray ionization–tandem mass spectrometry, including 17 flavonoids, five iridoids, two hydroxycinnamic acids, six triterpenic acids, one simple phenol, and one coumarin. Specifically, olive leaves were found to be excellent sources of flavonoids (4.92–18.29 mg/g dw), iridoids (5.75–33.73 mg/g dw), and triterpenic acids (15.72–35.75 mg/g dw), and considerable variations in phytochemical content were detected among the different cultivars. All tested cultivars were classified into three categories according to their oil contents for further comparative phytochemicals assessment. Principal component analysis indicated that the investigated olive cultivars could be distinguished based upon their phytochemical profiles and antioxidant capacities. The olive leaves obtained from the low-oil-content (<16%) cultivars exhibited higher levels of glycosylated flavonoids and iridoids, while those obtained from high-oil-content (>20%) cultivars contained mainly triterpenic acids in their compositions. Correspondingly, the low-oil-content cultivars (OL3, Frantoio selection and OL14, Huaou 5) exhibited the highest ABTS antioxidant activities (758.01 ± 16.54 and 710.64 ± 14.58 mg TE/g dw, respectively), and OL9 (Olea europaea subsp. Cuspidata isolate Yunnan) and OL3 exhibited the highest ferric reducing/antioxidant power assay values (1228.29 ± 23.95 mg TE/g dw and 1099.99 ± 14.30 mg TE/g dw, respectively). The results from this study may be beneficial to the comprehensive evaluation and utilization of bioactive compounds in olive leaves.  相似文献   

18.
Tea (Camellia sinensis) and herbal tea have been recognized as rich sources of bioactive constituents with the ability to exert antioxidant actions. The aims of this study were to analyze phenolic, carotenoid and saccharide contents in a set of Vietnamese tea and herbal tea and compare the results with those of green and black teas marketed in the U.S. In total, 27 phenolics, six carotenoids and chlorophylls, and three saccharides were quantitatively identified. Catechins, quercetin glycosides and chlorogenic acid were the predominating phenolics in the teas, with the concentrations following the order: jasmine/green teas > oolong tea > black tea. Lutein was the dominant carotenoid in the teas and its concentrations were generally found to be higher in the jasmine and green teas than in the oolong and black teas. The study showed that the green teas originating in Vietnam had much higher levels of phenolics and carotenoids than their counterparts stemming from another country. The application of partial least squares discriminant analysis (PLS-DA) as a chemometric tool was able to differentiate phenolic profiles between methanolic extracts and tea infusions. Through principal component analysis (PCA), the similarities and dissimilarities among the jasmine, green, oolong, black teas and herbal teas were depicted.  相似文献   

19.
This study examines the solubility and thermodynamics of febuxostat (FBX) in a variety of mono solvents, including “water, methanol (MeOH), ethanol (EtOH), isopropanol (IPA), 1-butanol (1-BuOH), 2-butanol (2-BuOH), ethylene glycol (EG), propylene glycol (PG), polyethylene glycol-400 (PEG-400), ethyl acetate (EA), Transcutol-HP (THP), and dimethyl sulfoxide (DMSO)” at 298.2–318.2 K and 101.1 kPa. The solubility of FBX was determined using a shake flask method and correlated with “van’t Hoff, Buchowski-Ksiazczak λh, and Apelblat models”. The overall error values for van’t Hoff, Buchowski-Ksiazczak λh, and Apelblat models was recorded to be 1.60, 2.86, and 1.14%, respectively. The maximum mole fraction solubility of FBX was 3.06 × 10−2 in PEG-400 at 318.2 K, however the least one was 1.97 × 10−7 in water at 298.2 K. The FBX solubility increased with temperature and the order followed in different mono solvents was PEG-400 (3.06 × 10−2) > THP (1.70 × 10−2) > 2-BuOH (1.38 × 10−2) > 1-BuOH (1.37 × 10−2) > IPA (1.10 × 10−2) > EtOH (8.37 × 10−3) > EA (8.31 × 10−3) > DMSO (7.35 × 10−3) > MeOH (3.26 × 10−3) > PG (1.88 × 10−3) > EG (1.31 × 10−3) > water (1.14 × 10−6) at 318.2 K. Compared to the other combinations of FBX and mono solvents, FBX-PEG-400 had the strongest solute-solvent interactions. The apparent thermodynamic analysis revealed that FBX dissolution was “endothermic and entropy-driven” in all mono solvents investigated. Based on these findings, PEG-400 appears to be the optimal co-solvent for FBX solubility.  相似文献   

20.
Aristotelia chilensis is a plant rich in phenolics and other bioactive compounds. Their leaves are discarded as waste in the maqui berry industry. A new application of these wastes is intended by the recovery of bioactive compounds using pressurized hot water extraction with conventional or microwave heating. Both technologies have been selected for their green character regarding the type of solvent and the high efficiency in shorter operation times. Extractions were performed in the temperature range 140–200 °C with a solid/liquid ratio of 1:15 (w:w). The extracts’ total phenolic content, antioxidant capacity, and saccharides content obtained with both heating methods were measured. Additionally, the thermo-rheological properties of the gelling matrix enriched with these extracts were analyzed. Optimum conditions for lyophilized extracts were found with conventional heating, at 140 °C and 20 min extraction; 250.0 mg GAE/g dry extract and 1321.5 mg Trolox/g dry extract. Close to optimum performance was achieved with microwave heating in a fraction of the time (5 min) at 160 °C (extraction), yielding extracts with 231.9 mg GAE/g dry extract of total phenolics and antiradical capacity equivalent to 1176.3 mg Trolox/g dry extract. Slightly higher antioxidant values were identified for spray-dried extracts (between 5% for phenolic content and 2.5% for antioxidant capacity). The extracts obtained with both heating methods at 200 °C contained more than 20% oligosaccharides, primarily glucose. All the formulated gelling matrices enriched with the obtained extracts displayed intermediate gel strength properties. The tested technologies efficiently recovered highly active antioxidant extracts, rich in polyphenolics, and valuable for formulating gelling matrices with potential applicability in foods and other products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号