首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The photobinding of radiolabeled psoralen and 8-methoxypsoralen (8-MOP) to biological macromolecules under conditions that affect the lifetime of singlet oxygen (1O2) is reported. These conditions are: increase of 1O2 lifetime in D2O and 1O2 quenching with DABCO. The photobinding to calf thymus DNA was studied in vitro and the covalent photobinding to DNA and other biological macromolecules (RNA, proteins) was also studied in intact bacteria. The results of the DNA photobinding experiments have been related to the induction of genetic damage in a bacterial test system. In addition, laser flash photolysis has been used to measure the effect of D2O and DABCO on the psoralen and 8-MOP triplet lifetimes. In general D2O increases the triplet lifetimes and DABCO quenches the triplet states with the probable formation of radicals. The results suggest that the covalent photobinding of 8-MOP to various biological macromolecules in situ is a basis for cell damage occurring at various cellular targets. Analysis of the results of the mutagenicity test suggests that in the presence of D2O the mechanism of induction of genetic lesions is not changed and therefore largely seems to be independent of singlet oxygen.  相似文献   

2.
Abstract— A novel method for the determination of singlet oxygen reaction rate constants is described and applied to studies of cyclohexadiene in methanol and gelatins in H2O and D2O. The technique uses tris (2,2'-bipyridine) ruthenium(II) dication (Ru(bipy)32+) as both singlet oxygen sensitizer and in situ oxygen concentration monitor during irradiation of sealed samples. Because of the high efficiency with which the luminescence of Ru(bipy)32+* can be detected, and the fact that emission lifetimes are used, the method offers some advantages over those previously described. The advantages and disadvantages of the method are discussed. A rate constant of 2.1 (±0.3) x 106 mol-1 dm3 s-1 has been determined for the reaction of 1O2 with cyclohexadiene in methanol. For two different photographic gelatins the sums of reaction and quenching rate constants are 2.0 (±0.4) x 106 and 3.1 (±2.0) x 105 mol-1 dm3 s-1; for swine skin gelatin this value is 3.9 (±2.4) × 105 mol-1 dm3 s-1. Chemical reaction, rather than physical quenching, is the dominant reaction route for gelatins and 1O2.  相似文献   

3.
Abstract In the presence of the photosensitizer riboflavin at high fluence rates a photoproduct, most probably H2O2, is formed which causes negative phototaxis in the colorless flagellate Polytomella magna . The aim of this study was to find out whether H2O2 is produced in a type I or II reaction. As has been shown, 1O2 quenchers either do not influence the photodynamic action of riboflavin (furfuryl ethanol, DPBF, l -histidine, crocetin) or show slight quenching effects only at very high concentrations ≧ 10−2 M (DABCO, DMF, imidazole). D2O is toxic to P. magna even in 1:1 and 1:2 mixtures with H2O. On the other hand, the quenching effect of 1,4-benzoquinone, highly indicative for the type I pathway, is more than two orders of magnitude stronger than the one of the above mentioned 1O2 quenchers. The results suggest that H2O2 is produced in a type I reaction. Superoxide does not seem to be involved since superoxide dismutase does not diminish the photodynamic effect of riboflavin.  相似文献   

4.
Abstract— The photolysis of aqueous solutions of cis -[Cr(C2O4)2(H2O)2]- at 254 nm and pH 4 produced CO2 and H2 in nearly equal yields. The quantum yield of hydrogen, φ2, increased by 9% and the yield of carbon dioxide, φ, by 65% as the pH was lowered from 4 to I. The total gas yield, φgas, decreased in the presence of added oxalate or chromium (II) ions and when the light intensity was lowered. The gas yield in D2O was appreciably higher than in H2O. The variation of φgas with pH (D) and with added oxalate ion was roughly parallel in the two liquid media. The gas yield increased in the series:
A tentative mechanism is suggested to explain the results.  相似文献   

5.
Abstract —In vivo participation of singlet excited oxygen (1O2, 1Δ9) in the photodynamic inactivation and induction of genetic changes (gene conversion) in acridine orange-sensitized yeast cells was investigated by using N3-, an efficient 1O2 quencher, and D2O, a known agent for the enhancement of the lifetime of 1O2. The addition of N3- protected the cells from both photodynamic actions. From an analysis of the concentration-dependent protection, about 80% of the induction of the genetic change is explainable on the basis of 1O2 mechanism. The quantitative estimation of the N3- protection in the inactivation was not possible because of the sigmoidal nature of the inactivation curve. The replacement of H2O with D2O during illumination was effective in enhancing the photodynamic inactivation but almost completely ineffective for the gene conversion induction. The deuterium effect with the cell system was clearly not as large as would be expected from in vitro experiments. This, however, could be explained from the kinetic consideration that natural quenchers of lO2 in the cell would mask the deuterium effect. By experiments with different cell stages it was demonstrated that these two modifying effects were dependent on the intracellular reaction environment. The conclusion is that 1O2 must be the major intermediate responsible for the photodynamic actions in acridine orangesensitized yeast cells.  相似文献   

6.
The influence of singlet oxygen (1O2), generated by red light irradiation of oxygenated suspensions containing aluminium phthalocyanine sulphonate, on the membrane bound enzyme β-hydroxybutyrate dehydrogenase was investigated. The inactivation rates were measured using a spectrophotometry assay which involves disruption of the mitochondria. A novel NMR assay was also used to measure the activity of the enzyme in intact mitochondria. Relatively high inactivation rates of around 109 M −1 s−1 were observed in H2O buffer, and rates in D2O were a factor of 1.7 faster. Significant differences in enzyme inactivation rates by 1O2 were observed, not only between disrupted and intact mitochondria but also between the NMR assay results and the spectrophotometric assay results. The results indicate the value of a specific assay which does not require the disruption of the biological system.  相似文献   

7.
Abstract— Although the mechanism of bioluminescent reactions in various species, such as fireflies, ostracod crustaceans ( Cypridina ), sea pansies ( Renilla ), and the deep-sea shrimp Oplophorus , are thought to involve dioxetanone intermediates, studies reported in the past from different laboratories have included widely different experimental results, most likely due to various factors including the effects of contaminating CO2. With the improved technique employed in the present study, bioluminescent reactions of the firefly and Cypridina in 18O2 gas resulted in an incorporation of over 75% of 18O into one oxygen of the product CO2. with a reproducibility within a few per cent. When 13CO2. instead of the product CO2 of the bioluminescent reaction, was studied in an H218O medium, the exchange of one oxygen of 13CO2 with H2O was 64%. and the effect of contaminant CO2 amounted to 1418% of the total CO2. These results suggest that every molecule of CO2 formed in the bioluminescent reactions of the firefly and Cypridina had intially contained 1 oxygen atom derived from O2.  相似文献   

8.
Abstract— The rate constant for quenching of 1O2 by azide ion in water was determined to be (5.0 ± 0.4) × 108 M −1 s−1 using a variety of sensitizers (including humic acids) and 1O2 acceptors. The apparent second-order rate constant decreases with pH below pH 5.5 in accordance with the protonation of azide ion to form hydrazoic acid (p K a= 4.6). Quenching by hydrazoic acid is at least 2 orders of magnitude slower than by azide ion. Greater than 99% of all interactions between 1O2 and azide ion involve physical quenching rather than chemical reaction. Humic acid triplets are not significantly quenched by azide ion at concentrations less than 2 m M , allowing azide ion quenching to be used as a diagnostic test for the intermediacy of 1O2 in photosensitized oxidations in natural surface waters.  相似文献   

9.
Abstract— The chemical reaction rate constant of bilirubin with singlet oxygen in basic aqueous solution has been redetermined to be 3.5 × 108 M-1 s-1 by a competitive technique using a 1,3-diphenylisobenzofuran in sodium dodecyl sulfate micelles. Bilirubin also physically quenches a singlet oxygen with a rate constant of 9 × 108 M -1 s-1. The lifetime of singlet oxygen in D2O solution has been determined to be 35 μ s . The absorption cross-section for the molecular oxygen 3g-→1δ g + 1 v electronic transition at 1.06μn in aqueous solution is unexpectedly larger than the gas paase cross-section.  相似文献   

10.
Lamotrigine (LTG) [3,5-diamino-6-(2,3-dichlorophenyl)-1,2,4-triazine], an anticonvulsant and antidepressant drug Lamictal®, produces a (photo)toxic response in some patients. LTG absorbs UV light, generating singlet oxygen (1O2) with a quantum yield of 0.22 in CH2Cl2, 0.11 in MeCN and 0.01 in D2O. A small production of superoxide radical anion was also detected in acetonitrile. Thus, LTG is a moderate photosensitizer producing phototoxicity and oxidizing linoleic acid. LTG is a weak 1O2 quencher ( k q = 3.2 × 105  m −1 s−1 in MeCN), but its photodecomposition products in dimethyl sulfoxide (DMSO) quenched 1O2 very efficiently. Upon intense UV irradiation from a xenon lamp, LTG was photobleached rapidly in DMSO and slowly in acetonitrile, alcohol and water. The rate increased significantly when laser pulses at 266 nm were employed. The photobleaching products generated 1O2 twice as strongly as LTG. Photobleaching was usually accompanied by the release of chloride anions, which increased in the presence of ascorbic acid. This suggests the formation of aryl radicals via dechlorination, a process which may be responsible for the photoallergic response observed in some patients. Our results demonstrate that LTG is a moderate generator of 1O2 prone to photodechlorination, especially in a reducing environment, which can contribute to the reported phototoxicity of LTG.  相似文献   

11.
HEMATOPORPHYRIN PHOTOSENSITIZATION OF SERUM ALBUMIN and SUBTILISIN BPN'   总被引:1,自引:0,他引:1  
—The photosensitized inactivation of subtilisin BPN' by free hematoporphyrin (HP) followed exponential kinetics with positive mechanistic tests for the involvement of singlet oxygen (1O2) as the principal intermediate. The photoinactivation quantum yield was 0.029 at 390 nm in oxygen-saturated, D2O buffer at pH 7.0. The effects of HP binding were investigated for tryptophan oxidation in bovine serum albumin (BSA) and human serum albumin (HSA) at high protein:HP concentration ratios where the HP was > 97% complexed. The reaction kinetics were non-exponential and mimick a second-order process in the initial stages. The rate of HP photobleaching was 30-fold faster for complexed HP compared with free HP, which was shown to account for the observed kinetics. Mechanistic tests showed that 1O2 was the dominant photooxidizing intermediate of tryptophan residues and that it was not involved in the accompanying photobleaching of HP. The quantum yield for tryptophan oxidation in BSA was 0.11 at 390 nm in oxygen-saturated, D2O buffer at pH 8.0. The reactivity of HSA was approximately 2-fold lower than BSA for equivalent conditions. Estimates of the reaction cross sections led to 3 Å2 for the inactivation of subtilisin BPN' by 1O2 and 20 Å2 for the oxidation of tryptophan in BSA.  相似文献   

12.
Abstract— The possibility of 1O2 (1Δg) participation in the oxidation of polyphenols and quinones has been investigated in two systems: (1) the system involving autooxidation leading to oxidative polymerization and destruction, and (2) the modified Trautz-Schorigin reaction, i.e. oxidation of polyphenols and HCHO with H2O2 in concentrated alkaline solutions. The red band with maximum at 635 nm observed in chemiluminescence of pyrocatechol, adrenaline, pyrogallol, gallic acid, adrenochrome and p -benzoquinone corresponds to the transition 2O2(1Δg) → 2O2(3Σ-g). Emission bands in the range 475–540 nm arise from the superposition of the 2O2(1Δg) → 2O2(3Σ-g) transition and radiative deactivation of excited oxidation products. In system (2) chemiluminescence has a broad band from 580 nm beyond 800 nm and much higher intensity than in system (1). Formaldehyde was found to enhance light emission in system (1) by a factor of about 30. The influence of solvents, including D2O in which 1O2 has varying lifetimes, on kinetics of chemiluminescence as well as quenching effect of β-carotene, hydroquinone, cysteine, bilirubin and biliverdin strongly support the involvement of 1O2 in the chemiluminescence of both systems.  相似文献   

13.
Abstract— We report the detection of a weak near-infrared light emission originating from 8 nM singlet molecular oxygen (1O2) produced in a mixture of 1 m M hypochlorite (OC1-) and 8 n M hydrogen peroxide (H2O2). The measurements were made with a highly sensitive detection system for ultraweak light emission in the 1.0-1.5 μm wavelength region. The emission intensity exhibited linear dependence for H2O2 concentrations in the range of 8-670 n M . The mixture containing a lower concentration (33 μ M ) of OCl- pseudocontinuously emitted near-infrared light for 5 s. The rate constant for 1O2 production obtained from the kinetic analysis agrees with that previously reported. Our results demonstrate the possibility of measuring very low concentrations of 1O2 in a OCi-/H2O2 mixture as well as 1O2 production in intact living systems.  相似文献   

14.
Abstract— The photooxidation of epinephrine, sensitized by methylene blue or by chlorophylls, excited with red light, involves the reduction of two molecules of oxygen to hydrogen peroxide per molecule of epinephrine oxidized to adrenochrome. The initial rates of these reactions are not affected by low concentrations of catalase. In 99 mol % D2O, rates of methylene blue sensitized photooxidations are accelerated as much as 5.2 times over rates in ordinary water. Azide anion is a more effective inhibitor of this reaction in D2O than in H2O. Half maximal inhibitions are obtained by 1.3 mM azide in H2O and by 0.1 mAf azide in D2O. Isotope effects and azide sensitivities point to photooxidation of epinephrine in D2O primarily by a singlet oxygen pathway; in H2O, non-singlet oxygen pathways become more predominant. Superoxide dismutase (SOD) markedly inhibits rates of the photooxidations in H2O and in D2O; about 25% at 10-9 M SOD, and 50% at 10-6 M SOD in H2O. In the photooxidation in H2O, both by non-singlet and singlet oxygen mechanisms, the amount of superoxide produced is equivalent to the amount of O2 consumed in the photooxidation of epinephrine; the superoxide thus formed participates in the oxidation of epinephrine.  相似文献   

15.
Abstract— Laser flash photolysis of trans -[Rh(dppe)2X2][PF6] (X=Br and I; dppe=bis(diphenylphosphino)ethane) in CH2Cl2 or CH3CN produces the d7 Rh(II) radicals, [Rh(dppe)2X]+, and halogen atoms. The kinetics of the disappearance of [Rh(dppe)2X]+ radicals in CH2Cl2 or CH3CN were mixed order: H-atom abstraction from solvent to produce the rhodium hydrides, [RhH(dppe)2X][PF6], and Rh/X recombination. In the poor H-atom donor solvent, benzonitrile, Rh/Br recombination was observed to be uncomplicated by competing H-atom abstraction. The hydride complexes [RhH(dppe)2X][PF6], formed by H-atom abstraction were completely characterized by 31P{1H}-NMR, 1H-NMR, and mass specrometry. Cyclohexene was used as an effective trap for photogenerated Br atoms and yielded bromocyclohexane and 3-bromocyclohexene in a relative yield, 1:9. The photochemical mechanism is discussed in light of the transient absorbance and trapping studies.  相似文献   

16.
-The luminescence at 1.27 μm from the 3→→1δg transition of the oxygen molecule has been detected from a variety of liquid systems. A Q-switched laser delivering pulses of 532 nm light was the excitation source, a germanium photodiode was the detector and substituted porphyrins were used as photosensitizers. Protio- and deutero- forms of several solvents were studied and the singlet oxygen lifetimes determined directly agreed well with published values. Tδ in D2O was found to be 55 μs and, by extrapolation from a series of H2O - D2O mixtures, a value of 3.3 μs was obtained for Tδ in H2O. The technique was shown to be useful in measuring Tδ values in several microheterogeneous systems such as surfactant micelles, vesicles and human serum albumin.  相似文献   

17.
Abstract— The skin photosensitizing furocoumarins, 8-methoxypsoralen (MOP) and 4,5',8-trimethylpsoralen (TMP), inactivate E. coli ribosomes in vitro , on UV irradiation at 313 nm. Purging the solutions with N2 protects the ribosomes considerably against photoinactivation (75% with MOP and 80% with TMP). In air, the ribosome photoinactivation is mainly due to singlet oxygen (1O2), since the presence of NaN3 and other 1O2 quenchers protects the system and the inactivation is enhanced in D2O. Although 1O2 dominates as the inactivating species, the possibility of additional (∼15%) minor mechanisms involving free radicals exists. However, O-2 does not appear to be the damaging species, since superoxide dismutase does not provide any protection.
Photosensitization of the partially purified enzyme, phe-tRNA-synthetase with MOP or TMP shows inactivation and protection curves similar to those seen with the ribosomes. On the other hand, unfrac-tionated tRNAphc is not photosensitized under similar conditions, although it shows self-photosensitization. It is likely that in the furocoumarin-sensitized ribosomes, the primary events of photoinactivation are associated with the proteins.  相似文献   

18.
Abstract— Peroxidation of tannins with alkaline H2O2 is accompanied by weak chemiluminescence in the spectral region 480–800 nm. o-Di and tri-hydroxy groups of polyphenols undergo oxidation by a free-radical mechanism and a green intermediate anion-radical with absorption Δmax= 600 nm is formed. The radical mechanism is supported by the low activation energy 14–20 kJ/mol and the quenching effect of radical scavengers. The reaction of the green intermediate with peroxy anions is the chemiluminescence rate limiting step. In the presence of a-hydroxy-methylperoxide formed from H2O2 and formaldehyde, the alkaline peroxidation of tannins is accompanied by strong red luminescence (420–800 nm). The base catalyzed decomposition of peroxides gives only a weak red emission (460–800 nm). Light intensity is enhanced in D2O by a factor 6.5. Quenchers of O2(1Δg) and 1,3-di-phenylisobenzofurane diminish light intensity in non-aqueous solutions. The data suggest 1O2 participation in the observed chemiluminescence. Thermo-chemical calculations give —ΔH values from 250–1000 kJ/mol for one elementary reaction step which limits the mechanism of chemi-enereization. Chemiexcitation of tannins is relevant to biochemical mechanisms of aerobic degradation of aromatic compounds, energy utilization as well as to defense and resistance processes in plants.  相似文献   

19.
Abstract— The spectra and molar absorbances of the HO2 and O2- free radicals have been redetermined in aqueous formate solutions by pulse and stopped-flow radiolysis as well as by 60Co gamma-ray studies. The extinction coefficients at the corresponding maxima and 23°C are 225= 1400 ± 80 M -1 cm-1 and 225= 2350 ± 120 M -1 cm-1 respectively. Reevaluation of earlier published rate data in terms of the new extinction coefficients yielded the following rate constants for the spontaneous decay of HO2 and O2-: K Ho2+HO2= (8.60 ± 0.62) × 105 M -1 s-1; K Ho2+O2-= (1.02 ± 0.49) × 108 M -1 s-1; K Ho2+O2- < 0.35 M -1 s-1. For the equilibrium HO2→ O2-+ H+ the dissociation constant is K Ho2= (2.05 ± 0.39) × 10-5 M or p K HO2= 4.69 ± 0.08. G (O2-) has been evaluated as a function of formate concentration.  相似文献   

20.
Abstract— The autoxidation of the catecholamine neurotoxin 6-hydroxydopamine (20 μ M ) gave rise to a chemiluminescence which was greatly stimulated by FeSO4 (20 μ M ) or by hydrogen peroxide addition (20 μ M to 2 m M ). The luminescence of both 6-hydroxydopamine alone or 6-hydroxydopamine plus hydrogen peroxide was strongly inhibited by catalase and by superoxide dismutase (both at 10 μg/m/); bovine serum albumin at 10 μg/m/ had no inhibitory effect. The luminescence was also strongly inhibited by several potent hydroxyl radical trapping agents and also by low concentrations of the 1O2 quencher DABCO (l,4-diazabicyclo-2.2.2.-octane). Chemiluminescence was greatly enhanced in D2O, a solvent in which 1O2 has a prolonged lifetime. These data demonstrate the involvement of hydrogen peroxide, the superoxide radical and the hydroxyl radical in the chemiluminescence. The data are also consistent with some role for 1O2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号