首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A calibration procedure has been derived that permits reliable hot-wire measurements close to walls. When hot wires are calibrated in a free flow and subsequently used for near-wall velocity measurements, erroneous velocity information results because of additional heat losses to the wall. On the other hand, laser-Doppler anemometry (LDA) measurements of local time mean velocities are very little affected by the presence of the wall and this readily suggests in situ calibration of hot wires located just behind the LDA measuring volume and at the same distance from the wall. Calibrations of this kind are described for highly heat-conducting walls and the results show good agreement with corresponding data obtained through numerical investigations. The present investigations permit a generally applicable correction curve to be suggested for hot-wire velocity measurements close to walls of high thermal conductivity. Received: 3 May 2000/Accepted: 24 November 2000  相似文献   

2.
The boundary layer which represents the narrow zone between a solid body and the free stream can have a laminar or a turbulent state. This state influences on the one hand the properties of the near-wall flow like skin friction or heat transfer and on the other hand also the free-stream flow itself, e.g. the downstream flow angle of a turbomachinery blade. Thus it is important for designers of fluid machinery to understand and predict the state of the boundary layer as well as the transition processes between the two states.In this work the so-called relaminarization is investigated which represents a reverse transition from a turbulent to a laminar boundary layer. At the Institute for Thermal Turbomachinery and Machine Dynamics at Graz University of Technology a test bench has been designed in order to produce a highly accelerated flow, thus triggering relaminarization. In the present work, the flow in this test bench is numerically investigated with Reynolds-averaged Navier-Stokes (RANS) flow simulation as well as with a large eddy simulation (LES).An outcome of this paper is, that the LES shows a very good agreement to the measurement results and is capable of predicting relaminarization.  相似文献   

3.
A 24′′ (610 mm) access laser-Doppler velocimeter (LDV) system was developed to make simultaneous three-velocity-component measurements in a low speed linear cascade wind tunnel with moving wall simulation. The probe has a 610 mm access length and achieves a measurement spatial resolution of 100 μm by using off-axis optical heads. With the relatively large access length, the LDV probe allows for measurements from the side of a wind tunnel instead of through the tunnel floor, while the high spatial resolution allows for quality near-wall measurements. The probe has been tested in a zero-pressure gradient 2D turbulent boundary layer and the test results agree well with the experimental data measured with different LDV systems and hot-wire anemometery for the boundary layer flows. The energy spectral density was estimated using a slot correlation, and Von Kármán’s model for the energy-spectrum function was used to analyze the measured spectral data to estimate the turbulent kinetic energy dissipation rate, which compares favorably with the measured production values in the log-layer region of the turbulent boundary layer. Measurements are presented for the moving endwall boundary layer at the inlet of the linear compressor cascade facility to validate the capability of this LDV for tip leakage flow measurements. These results indicate that the moving endwall reduces velocity gradients in the near-wall region and results in less production of Reynolds stresses and turbulent kinetic energy compared to the stationary endwall case.  相似文献   

4.
Time-resolved PIV measurements were performed in a dilute particle-laden flow tracking near-neutrally buoyant polystyrene beads and the velocity field of a near wall turbulent boundary layer. Data were taken in a vertical light sheet aligned in the streamwise direction at the center of a horizontal, closed loop, transparent square water channel facility. In addition, low speed measurements were performed characterizing the effects of the dispersed phase on mean and turbulence flow quantities. Reynolds shear stress slightly differed from clear water conditions whereas fluid mean and rms values were not affected. A case study for several beads revealed a clear relation between their movement and near-wall coherent structures. Several structures having 2D vorticity signatures of near-wall hairpin vortices and hairpin packets, directly affected bead movement. A statistical analysis showed that the mean streamwise velocity of ascending beads lagged behind the mean fluid velocity and bead rms values were higher than fluid ones. Particle Reynolds numbers based on the magnitude of the instantaneous relative velocity vector peaked near the wall; values not exceeding 100, too low for vortex shedding to occur. Quadrant analysis showed a clear preference for ascending beads to reside in ejections while for descending beads the preference for sweeps was less.  相似文献   

5.
A new turbulent intermittency detector method, based on the Turbulent Energy Recognition Algorithm (TERA), has been proposed. Its performance was compared with two other available methods using the data obtained from hot-wire measurements in a developing boundary layer flow on a concave surface with constant radius of curvature of 2 m. Comparisons show that this new method is better than the other two as a turbulent detector under the same flow conditions, especially in the near-wall and in the outer and outside regions of the boundary layer.  相似文献   

6.
Two non-intrusive techniques, namely laser Doppler anemometry (LDA) and the electrochemical method, have been used for simultaneous measurements of the instantaneous streamwise velocity (U) and longitudinal wall shear stress (S), evaluated in a zero pressure gradient turbulent boundary layer. The space-time correlation between the fluctuating velocity and shear stress suggests that the coherent flow structures are propagated (i) under a slight angle of 5° in the near-wall region and (ii) at an average angle of 15.5° for y+>30. It is shown that the time shift obtained from the correlation between the LDA and the electrochemical signals is due to the dynamic behaviour of the electrodiffusion probe, but also to the leaning character of the coherent structures.  相似文献   

7.
 A horizontal turbulent boundary layer of air carrying heavy solid particles is investigated experimentally. Mean and r.m.s. velocities of air and particles are measured by LDA, and particle mass flux distributions are obtained by means of a sampling method. The influence of the saltation mechanism is revealed by the large particle r.m.s. velocity in the near-wall region, and by the velocity lag of the particles in the outer region of the boundary layer, which is shown to be closely related to their free fall velocity. The present original results are discussed and compared with available experimental data concerning other kinds of horizontal flows. Received: 17 June 1996/Accepted: 3 April 1997  相似文献   

8.
Turbulence in rough-wall boundary layers: universality issues   总被引:1,自引:0,他引:1  
Wind tunnel measurements of turbulent boundary layers over three-dimensional rough surfaces have been carried out to determine the critical roughness height beyond which the roughness affects the turbulence characteristics of the entire boundary layer. Experiments were performed on three types of surfaces, consisting of an urban type surface with square random height elements, a diamond-pattern wire mesh and a sand-paper type grit. The measurements were carried out over a momentum thickness Reynolds number (Re θ) range of 1,300–28,000 using two-component Laser Doppler anemometry (LDA) and hot-wire anemometry (HWA). A wide range of the ratio of roughness element height h to boundary layer thickness δ was covered (0.04 £ h/d £ 0.400.04 \leq h/\delta \leq 0.40). The results confirm that the mean profiles for all the surfaces collapse well in velocity defect form up to surprisingly large values of h/δ, perhaps as large as 0.2, but with a somewhat larger outer layer wake strength than for smooth-wall flows, as previously found. At lower h/δ, at least up to 0.15, the Reynolds stresses for all surfaces show good agreement throughout the boundary layer, collapsing with smooth-wall results outside the near-wall region. With increasing h/δ, however, the turbulence above the near-wall region is gradually modified until the entire flow is affected. Quadrant analysis confirms that changes in the rough-wall boundary layers certainly exist but are confined to the near-wall region at low h/δ; for h/δ beyond about 0.2 the quadrant events show that the structural changes extend throughout much of the boundary layer. Taken together, the data suggest that above h/δ ≈ 0.15, the details of the roughness have a weak effect on how quickly (with rising h/δ) the turbulence structure in the outer flow ceases to conform to the classical boundary layer behaviour. The present results provide support for Townsend’s wall similarity hypothesis at low h/δ and also suggest that a single critical roughness height beyond which it fails does not exist. For fully rough flows, the data also confirm that mean flow and turbulence quantities are essentially independent of Re θ; all the Reynolds stresses match those of smooth-wall flows at very high Re θ. Nonetheless, there is a noticeable increase in stress contributions from strong sweep events in the near-wall region, even at quite low h/δ.  相似文献   

9.
 Modifications to near-wall turbulent boundary layer structure with increased three-dimensionality have been investigated through the use of hydrogen bubble wire flow visualization. Results indicate that three-dimensionality does not influence the strength or sign of near-wall streamwise vortices. Increased three-dimensionality does stabilize the near-wall structure resulting in less ejection type activity. The spanwise spacing between low-speed streaks also decreased slightly with increased cross-flow. Received: 15 October 1996/Accepted: 2 April 1997  相似文献   

10.
An experimental study on heat transfer enhancement for a turbulent natural convection boundary layer in air along a vertical flat plate has been performed by inserting a long flat plate in the spanwise direction (simple heat transfer promoter) and short flat plates aligned in the spanwise direction (split heat transfer promoter) with clearances into the near-wall region of the boundary layer. For a simple heat transfer promoter, the heat transfer coefficients increase by a peak value of approximately 37% in the downstream region of the promoter compared with those in the usual turbulent natural convection boundary layer. It is found from flow visualization and simultaneous measurements of the flow and thermal fields with hot- and cold-wires that such increase of heat transfer coefficients is mainly caused by the deflection of flows toward the outer region of the boundary layer and the invasion of low-temperature fluids from the outer region to the near-wall region with large-scale vortex motions riding out the promoter. However, heat transfer coefficients for a split heat transfer promoter exhibit an increase in peak value of approximately 60% in the downstream region of the promoter. Flow visualization and PIV measurements show that such remarkable heat transfer enhancement is attributed to longitudinal vortices generated by flows passing through the clearances of the promoter in addition to large-scale vortex motions riding out the promoter. Consequently, it is concluded that heat transfer enhancement of the turbulent natural convection boundary layer can be substantially achieved in a wide area of the turbulent natural convection boundary layer by employing multiple column split heat transfer promoters. It may be expected that the heat transfer enhancement in excess of approximately 40% can be accomplished by inserting such promoters.  相似文献   

11.
We present the results of a Direct Numerical Simulation of a particle-laden spatially developing turbulent boundary layer up to Re θ ?=?2500. Two main features differentiate the behavior of inertial particles in a zero-pressure-gradient turbulent boundary layer from the more commonly studied case of a parallel channel flow. The first is the variation along the streamwise direction of the local dimensionless parameters defining the fluid-particle interactions. The second is the coexistence of an irrotational free-stream and a near-wall rotational turbulent flow. As concerns the first issue, an inner and an outer Stokes number can be defined using inner and outer flow units. The inner Stokes number governs the near-wall behavior similarly to the case of channel flow. To understand the effect of a laminar-turbulent interface, we examine the behavior of particles initially released in the free stream and show that they present a distinct behavior with respect to those directly injected inside the boundary layer. A region of minimum concentration occurs inside the turbulent boundary layer at about one displacement thickness from the wall. Its formation is due to the competition between two transport mechanisms: a relatively slow turbulent diffusion towards the buffer layer and a fast turbophoretic drift towards the wall.  相似文献   

12.
Two-dimensional flow over periodically arranged hills was investigated experimentally in a water channel. Two-dimensional particle image velocimetry (PIV) and one-dimensional laser Doppler anemometry (LDA) measurements were undertaken at four Reynolds numbers ( \text5,600 £ Re £ \text37,000\text{5,600} \le Re \le \text{37,000}). Two-dimensional PIV field measurements were thoroughly validated by means of point-by-point 1D LDA measurements at certain positions of the flow. A detailed study of the periodicity and the homogeneity was undertaken, which demonstrates that the flow can be regarded as two-dimensional and periodic for Re 3 \text10,000Re \ge \text{10,000}. We found a decreasing reattachment length with increasing Reynolds number. This is connected to a higher momentum in the near-wall zone close to flow separation which comes from the velocity speed up above the obstacle. This leads to a velocity overshoot directly above the hill crest which increases with Reynolds number as the inner layer depth decreases. The flow speed up above that layer is independent of the Reynolds number which supports the assumption of inviscid flow disturbance in the outer layer usually made in asymptotic theory for flow over small hills.  相似文献   

13.
A visualization study is conducted on the excited laminar-turbulent transition within a flat plate boundary layer flow in a water tunnel. The hydrogen bubble technique is employed to investigate the complex characteristics of the flow structure and its breakdown in the later stages of the transition. A new flow structure is observed, which involves two secondary hairpin vortices outboard of both legs of a primary hairpin vortex. This complex structure is argued to be a precursor of a turbulent spot in this K-type transition. Also reported in the paper is the evolution of the flow structure and its subsequent breakdown, manifested by the emergence of dark spots, low-speed fluid bumps, and near-wall hairpin vortex groups. The results indicate that the near-wall flow breakdown is the result of instability of a local three-dimensional high-shear layer between the low-speed fluid bump and the outer higher-speed region.  相似文献   

14.
The generalized Langevin model, which is used to model the motion of stochastic particles in the velocity–composition joint probability density function (PDF) method for reacting turbulent flows, has been extended to incorporate solid wall effects. Anisotropy of Reynolds stresses in the near-wall region has been addressed. Numerical experiments have been performed to demonstrate that the forces in the near-wall region of a turbulent flow cause the stochastic particles approachi ng a solid wall to reverse their direction of motion normal to the wall and thereby, leave the near-wall layer. This new boundary treatment has subsequently been implemented in a full-scale problem to prove its validity. The test problem considered here is that of an isothermal, non-reacting turbulent flow in a two-dimensional channel with plug inflow and a fixed back-pressure. An efficient pressure correction method, developed in the spirit of the PISO algorithm, has been implemented. The pressure correction strategy is easy to implement and is completely consistent with the time- marching scheme used for the solution of the Lagrangian momentum equations. The results show remarkable agreement with both k–ϵ and algebraic Reynolds stress model calculations for the primary velocity. The secondary flow velocity and the turbulent moments are in better agreement with the algebraic Reynolds stress model predictions than the k– ϵ predictions. © 1997 by John Wiley & Sons, Ltd.  相似文献   

15.
Summary The boundary layer equations for axisymmetric flow of an incompressible second-order fluid have been deduced. The flow of such a fluid near a stagnation point when the main stream outside the boundary layer fluctuates in magnitude but not in direction has been discussed. The velocity distribution is found for various values of the steady mean in two limiting cases of small and large values of the frequency of the oscillation of the main stream. The frequency for which two approximate solutions overlap has been calculated in each case.  相似文献   

16.
We report a combined experimental and theoretical investigation of the influence of spatial non-uniformities of the refractive index on the accuracy of laser Doppler anemometry (LDA) measurements in transparent fluids. One LDA beam is guided through heated air of a thermal boundary layer near a heated vertical flat plate. It is found that the hot air is deflecting the beam because of a modification of the refractive index n in the fluid. This deflection causes three effects: (1) spatial displacement of beam intersection, (2) waist mismatch in the measurement volume and (3) variation in interference fringe distance. With the help of a rotating disk calibration system the resulting displacement of the LDA measurement volume and the Doppler frequency variation is systematically studied at different temperatures. Using a simple model of beam propagation under the influence of well-defined temperature inhomogeneities, the displacement of measurement volume and change in Doppler frequency are calculated and are found to be in agreement with the experimental observations. The results provide a rational framework for an assessment of the accuracy of LDA data in arbitrary transparent fluids with non-uniform refractive index.  相似文献   

17.
Dynamic fluid–solid interactions are widely found in chemical engineering, such as in particle-laden flows, which usually contain complex moving boundaries. The immersed boundary method (IBM) is a convenient approach to handle fluid–solid interactions with complex geometries. In this work, Uhlmann's direct-forcing IBM is improved and implemented on a supercomputer with CPU–GPU hybrid architecture. The direct-forcing IBM is modified as follows: the Poisson's equation for pressure is solved before evaluation of the body force, and the force is only distributed to the Cartesian grids inside the immersed boundary. A multidirect forcing scheme is used to evaluate the body force. These modifications result in a divergence-free flow field in the fluid domain and the no-slip boundary condition at the immersed boundary simultaneously. This method is implemented in an explicit finite-difference fractional-step scheme, and validated by 2D simulations of lid-driven cavity flow, Couette flow between two concentric cylinders and flow over a circular cylinder. Finally, the method is used to simulate the sedimentation of two circular particles in a channel. The results agree very well with previous experimental and numerical data, and are more accurate than the conventional direct-forcing method, especially in the vicinity of a moving boundary.  相似文献   

18.
19.
The effect of micro-bubbles on the turbulent boundary layer in the channel flow with Reynolds numbers (Re) ranging from \(0.87\times 10 ^{5}\) to \(1.23\times 10^{5}\) is experimentally studied by using particle image velocimetry (PIV) measurements. The micro-bubbles are produced by water electrolysis. The velocity profiles, Reynolds stress and instantaneous structures of the boundary layer, with and without micro-bubbles, are measured and analyzed. The presence of micro-bubbles changes the streamwise mean velocity of the fluid and increases the wall shear stress. The results show that micro-bubbles have two effects, buoyancy and extrusion, which dominate the flow behavior of the mixed fluid in the turbulent boundary layer. The buoyancy effect leads to upward motion that drives the fluid motion in the same direction and, therefore, enhances the turbulence intense of the boundary layer. While for the extrusion effect, the presence of accumulated micro-bubbles pushes the flow structures in the turbulent boundary layer away from the near-wall region. The interaction between these two effects causes the vorticity structures and turbulence activity to be in the region far away from the wall. The buoyancy effect is dominant when the Re is relatively small, while the extrusion effect plays a more important role when Re rises.  相似文献   

20.
Heat transfer properties vary locally and temporally in internal combustion engines due to variations in the boundary layer flow. In order to characterize the dynamics in the boundary layer, crank-angle resolved high-speed micro particle image velocimetry (μPIV) and particle tracking velocimetry (PTV) have been used for near-wall velocity measurements in a spark-ignition direct-injection single cylinder engine. A 527-nm dual cavity green Nd:YLF laser was used for velocity measurements near the cylinder head wall between the intake and exhaust valves in the tumble mean flow plane parallel to the cylinder axis. A long-distance microscope was used to obtain a spatial resolution of 45 μm. Flow fields were determined from 180 to 490 CAD in the compression and expansion strokes. The data show significant variation in the flow during the compression and expansion strokes and from cycle to cycle. Flow deceleration was observed during the end of the compression that continued during the expansion stroke until 400 CAD when the flow direction reverses. Sub-millimeter-sized vortical structures were observed within the boundary layer over extended periods of time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号