首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mass spectra of cyclo-(Gly-Leu), cyclo-(Gly-Tyr), cyclo-(Ala-Tyr), cyclo-(Leu-Tyr), cyclo-(Val-Phe) and cyclo-(Leu-Phe) are presented. The use of high resolution mass measurements and metastable analysis allows the proposal of some general fragmentation mechanisms. The dominant features in the mass spectra of 2,5-diketopiperazines are fragments corresponding to cleavages of sidechains and the rupture of the piperazine-2,5-dione ring. The characteristic fragments may be used in the identification of any 2,5-diketopiperazines by mass spectrometry.  相似文献   

2.
The cyclic host cyclo-[P(Cu)](2) carrying two covalently connected Cu(II) porphyrin units can accommodate La@C(82), a paramagnetic endohedral metallofullerene, in its cavity to form the inclusion complex cyclo-[P(Cu)](2)?La@C(82), which can be transformed into the caged complex cage-[P(Cu)](2)?La@C(82) by ring-closing olefin metathesis of its side-chain olefinic termini. On the basis of electron spin resonance (ESR) and electron spin transient nutation (ESTN) studies, cyclo-[P(Cu)](2)?La@C(82) is the first ferromagnetically coupled inclusion complex featuring La@C(82), whereas cage-[P(Cu)](2)?La@C(82) is ferrimagnetic.  相似文献   

3.
The (*)OH-induced oxidation of 1,3,5-trithiacyclohexane (1) in aqueous solution was studied by means of pulse radiolysis with optical and conductivity detection. This oxidation leads, via a short-lived (*)OH radical adduct (<1 micros), to the radical cation 1(*+) showing a broad absorption with lambda(max) equal to 610 nm. A defined pathway of the decay of 1(*+) is proton elimination. It occurs with k = (2.2 +/- 0.2) x 10(4) s(-1) and yields the cyclic C-centered radical 1(-H)(*). The latter radical decays via ring opening (beta-scission) with an estimated rate constant of about 10(5) s(-1). A distinct, immediate product (formed with the same rate constant) is characterized by a narrow absorption band with lambda(max) = 310 nm and is attributed to the presence of a dithioester function. The formation of the 310 nm absorption can be suppressed in the presence of oxygen, the rationale for this being a reaction of the C-centered cyclic radical 1(-H)(*) with O(2). The disappearance of the 310 nm band (with a rate constant of 900 s(-1)) is associated with the hydrolysis of the dithioester functionality. A further aspect of this study deals with the reaction of H(*) atoms with 1 which yields a strongly absorbing, three-electron-bonded 2sigma/1sigma* radical cation [1(S therefore S)-H](+) (lambda(max) = 400 nm). Its formation is based on an addition of H(*) to one of the sulfur atoms, followed by beta-scission, intramolecular sulfur-sulfur coupling (constituting a ring contraction), and further stabilization of the S therefore S bond thus formed by protonation. [1(S therefore S)-H](+) decays with a first-order rate constant of about 10(4) s(-1). Its formation can be suppressed by the addition of oxygen which scavenges the H(*) atoms prior to their reaction with 1. Complementary time-resolved conductivity experiments have provided information on the quantification of the 1(*+) radical cation yield, the cationic longer-lived follow-up species, extinction coefficients, and kinetics concerning deprotonation processes as well as further reaction steps after hydrolysis of the transient dithioesters. The results are also discussed in the light of previous photochemical studies.  相似文献   

4.
水相中四氯化碳的激光闪光光解研究   总被引:2,自引:0,他引:2  
于勇  王淑惠  侯健  侯惠奇  姚思德  王文峰 《化学学报》1999,57(10):1081-1087
利用激光闪光光解技术研究了水相中四氯化碳光分解和光氧化的微观机制,并且指证了水相中四氯化碳受光激发所产生的瞬态光谱中的一些瞬态物种的特征吸收峰。并对这些瞬态物种的行为和归宿进行了研究。研究表明在248nm激光作用下,四氯化碳受光激发将分解为CCl~3^.自由基和Cl^.自由基。CCl~3^.自由基在无氧/有氧条件下的反应途径是不同的:在无氧条件下CCl~3^.自由基将进行偶合反应生成更难于降解的C~2Cl~6;而在有氧条件下CCl~3^.自由基则与O~2反应生成CCl~3O~2^.自由基,而CCl~3O~2^.自由基最终转变为COCl~2,这意味着光氧化能够有效地降解CCl~4。Cl^.自由基基本上不受氧气存在的影响,其归宿是与水分子发生电荷转移反应。  相似文献   

5.
利用纳秒级激光光解动态吸收光谱装置,研究了1,2-和1,4-萘醌中性水溶液的瞬态吸收光谱.发现1,2-萘醌及1,4-萘醌被光电离后形成的阳离子自由基在380nm均有最大吸收,但1,4-萘醌阳离子自由基在衰变过程中又形成了两种新的活性粒子,它们的最大吸收分别位于410和580nm,分析表明:410nm属于1,4-萘醌脱氢自由基的吸收,而580nm很可能归属由于电子转移而形成的瞬态产物.进一步研究发现,1,2-萘醌在中性水溶液中能被248nm激光单光子电离.  相似文献   

6.
The transient absorption of radical cations of a variety of substituted polysilanes is discussed quantitatively in terms of the molar extinction coefficient and oscillator strength by nanosecond pulse radiolysis. Oxygen-saturated polysilane solutions in benzene exhibit a strong transient absorption band ascribed to the polysilane radical cation. The transient species react with N,N,N',N'-tetramethyl-p-phenylene-diamine (TMPD) to produce TMPD radical cations. On the basis of the molar extinction coefficient of the TMPD radical cation, the molar extinction coefficients for the radical cations of polysilanes are found to increase in the range 3.3 x 10(4) to 2.0 x 10(5) M(-)(1) cm(-)(1) with increasing polymer segment length. The stepwise increase in the total oscillator strength with an increase in the number of phenyl rings directly bonded to the Si skeleton suggests the delocalization of the positive polaron state and/or the SOMO state over the phenyl rings, indicating the importance of phenyl rings in intermolecular hole transfer processes.  相似文献   

7.
Hydrogen abstraction reaction of fenofibric acid (FA) in acetonitrile and isopropyl alcohol solvents was studied by femtosecond transient absorption (fs-TA) and nanosecond time-resolved resonance Raman (ns-TR(3)) spectroscopy experiments. The singlet excite state ((1)FA) (nπ*) with a maximum transient absorption at 352 nm observed in the fs-TA experiments undergoes efficient intersystem crossing (ISC) to convert into a nπ* triplet state FA ((3)FA) that exhibits two transient absorption bands at 345 and 542 nm. The nπ* (3)FA species does not decay obviously within 3000 ps. In the ns-TR(3) experiments, the nπ* (3)FA is also observed and completely decays by 120 ns. Compared with the triplet states of benzophenone (BP) and ketoprofen (KP), the nπ* (3)FA species seems to have a much higher hydrogen abstraction reactivity so that (3)FA decays fast and generates a FA ketyl radical like species. In isopropyl alcohol solvent, the nπ* (3)FA exhibits similar reactivity and promptly abstracts a hydrogen from the strong hydrogen donor isopropyl alcohol solvent to generate a ketyl radical intermediate. With the decay of the FA ketyl radical, no light absorption transient (LAT) intermediate is observed in isopropyl alcohol solvent although such a LAT species was observed after similar experiments for BP and KP. Comparison of the ns-TR(3) spectra for the species of interest with results from density functional theory calculations were used to elucidate the identity, structure, properties, and major spectral features of the intermediates observed in the ns-TR(3) spectra. This comparison provides insight into the structure and hydrogen abstraction reactivity of the triplet states of BP derivatives.  相似文献   

8.
A concerted experi-mental (time-resolved spectroscopies) and computational (TDDFT) study of p-N,N-dimethylamino-p'-cyano-diphenylacetylene (DACN-DPA) has been carried out to probe the intramolecular charge transfer (ICT) reaction that occurs in polar solvents. The picosecond transient absorption, as well as fluorescence, in acetonitrile reveals the formation of a twisted ICT(σ*) state, which involves transfer of an electron from the 4-(dimethylamino)benzethyne moiety (DMAB) to the benzonitrile (BN) group. This ICT(σ*) state, with a large dipole moment (24.7 D) and a geometry in which the plane of electron-accepting BN group is perpendicular to the plane electron-donating DMAB moiety and the angles of C(DMAB)C≡C is 135.0°, is responsible for the greatly Stokes-shifted (~8000 cm(-1)) fluorescence and the transient absorption bands (with peaks at about 630 and 425 nm), which decays with the same lifetime (~780 ps). It is proposed that the 630 nm picosecond transient absorption of the ICT state represents the absorption spectrum of dimethylaminobenzethyne radical cation and the 425 nm transient represents the absorption spectrum of benzonitrile radical anion. In nonpolar n-hexane, most of the fluorescence as well as the major component of the transient absorption originate from the S(1) (ππ*) state.  相似文献   

9.
The radical cation of an NADH analogue (BNAH: 1-benzyl-1,4-dihydronicotinamide) has been successfully detected as the transient absorption and ESR spectra in the thermal electron transfer from BNAH to Fe(bpy)33+ (bpy = 2,2'-bipyridine). The ESR spectra of the radical cations of BNAH and the dideuterated compound (BNAH-4,4'-d2) indicate that the observed radical cation is the keto form rather than the enol form in the tautomerization. The deprotonation rate and the kinetic isotope effects of the keto form of BNAH*+ were determined from the kinetic analysis of the electron-transfer reactions.  相似文献   

10.
Abstract— The 3-tyrosinyl free radicals (3-Tyr) and iodine atom are formed by flash photolysis of 3-iodotyrosine (3-Tyr-I) in aqueous solutions at pH 5. The presence of iodine atoms in the medium is characterized by the absorption spectrum and the decay kinetics of I formed when KI is added to the system. In the absence of radical scavengers, the 3-Tyr adds to or reacts with the parent molecule to produce a transient species, probably a radical dimer, which has an absorption maximum at 405 nm. The decay of this transient follows second order kinetics whose rate constant increases with decreasing 3-iodotyrosine concentration. Measurements of the dependence of the transient yield on the concentration of added ethanol indicate that the 3-Tyr radical reacts with ethanol by hydrogen abstraction. The rate constants of reaction of the 3-Tyr radical with 3-iodotyrosine and ethanol are deduced from results.  相似文献   

11.
Oxoverdazyl (Vz) radical units were covalently linked to the naphthalenediimide (NDI) chromophore to study the effect of the radical on the photophysical properties, especially the radical enhanced intersystem crossing (REISC), which is a promising approach to develop heavy-atom-free triplet photosensitizers. Rigid phenyl or ethynylphenyl linkers between the two moieties were used, thus REISC and formation of doublet (D1, total spin quantum number S=1/2) and quartet states (Q1, S=3/2) are anticipated. The photophysical properties of the dyads were studied with steady-state and femtosecond/nanosecond transient absorption (TA) spectroscopies and DFT computations. Femtosecond transient absorption spectra show a fast electron transfer (<150 fs), and ISC (ca. 1.4–1.85 ps) is induced by charge recombination (CR, in toluene). Nanosecond transient absorption spectra demonstrated a biexponential decay of the triplet state of the NDI moiety. The fast component (lifetime: 50 ns; population ratio: 80 %) is assigned to the D1→D0 decay, and the slow decay component (2.0 μs; 20 %) to the Q1→D0 ISC. DFT computations indicated ferromagnetic interactions between the radical and chromophore (J=0.07–0.13 eV). Reversible formation of the radical anion of the NDI moiety by photoreduction of the radical-NDI dyads in the presence of sacrificial electron donor triethanolamine (TEOA) is achieved. This work is useful for design of new triplet photosensitizers based on the REISC effect.  相似文献   

12.
Abstract— The flash photolysis of 5-m-ethoxy-1-m-ethylindole in aqueous media was studied for the purpose of assigning the absorption spectrum of the radical cation. Transients produced in this study were analogous to those formed in the photolysis of 5-m-ethoxyindole. The major transient observed with an absorption maximum of 460 nm was O2-s-ensitive and had a lifetime of 20 μs in nitrogen saturated solutions. One radical species is produced with absorption maxima at 445 and 530 nm. Ionic strength effects on the reaction of this species with I confirms that it is the radical cation of 5-m-ethoxy-l-methylindole. The effect of H+ and Br on the fluorescence, radical cation and triplet yields is discussed in relation to the mechanism of transient formation.  相似文献   

13.
In this paper, we report the results of a laser flash photolysis study of the reactions of a range of carotenoids with acylperoxyl radicals in polar and nonpolar solvents. The results show, for the first time, that carotenoid addition radicals do not react with oxygen to form carotenoid peroxyl radicals; an observation which is of significance in relation to antioxidant/pro-oxidant properties of carotenoids. Acylperoxyl radicals, generated by photolysis of ketone precursors in oxygenated solvents, display high reactivity toward carotenoids in both polar and nonpolar solvents, but the nature of the carotenoid radicals formed is dependent on solvent polarity. In hexane, acylperoxyl radicals react with carotenoids with rate constants in the region of 10(9) M(-1) s(-1) and give rise to transient absorption changes in the visible region that are attributed to the formation of addition radicals. All of the carotenoids show bleaching in the region of ground-state absorption and, with the exception of 7,7'-dihydro-beta-carotene (77DH), no distinct absorption features due to addition radicals are observed beyond the ground state absorption region. For 77DH, the addition radical displays an absorption band that is spectrally resolved from the parent carotenoid absorption. The rate of decay of the 77DH addition radical is unaffected by oxygen in the concentration range 10(-4)-10(-2) M, suggesting that these resonance-stabilized carbon-centered radicals are not scavenged by oxygen. At low incident laser intensities, the 77DH addition radical decay kinetics are 1st order with k(1) approximately 4 x 10(3) s(-1) at room temperature. The 1st order decay is attributed to an intramolecular cyclization process, which is supported by the substantial negative entropies of activation obtained from measurements of the decay rate constants for different 77DH addition radicals as a function of temperature. No transient absorption features are observed in the red or near-infrared regions in hexane for any of the carotenoids studied. In polar solvents such as methanol, acylperoxyl radicals also react with carotenoids with rate constants in the region of 10(9) M(-1) s(-1), but give rise to transient absorption changes in both the visible and the red/near-infrared regions, where it is evident that there are two distinct species. For 77DH, the addition radical absorption around 450 nm is still evident, although its kinetic behavior differs from its behavior in hexane. For 77DH and zeta-carotene (zeta-CAR) the spectral and kinetic resolution of the various absorption bands simplifies kinetic analysis. The kinetic evidence suggests that addition radical formation precedes formation of the two near-infrared absorbing species, and that the kinetics of the addition radical decay match the kinetics of formation of the first of these species (NIR1, absorbing at shorter wavelengths). The decay of NIR1 leads to NIR2, which is attributed to the carotenoid radical cation. The solvent dielectric constant dependence of the relative amounts of NIR1 and NIR2 formed leads us to speculate that NIR1 is an ion-pair. However, an alternative assignment for NIR1 is an isomer of the radical cation. The results, in terms of the pattern of reactivity the carotenoids display and of the properties of the carotenoid radicals formed, are discussed in relation to the antioxidant/pro-oxidant properties of carotenoids.  相似文献   

14.
The transient absorption spectrum (max = 320, 400 and 550 nm) obtained on reaction of OH radicals with 4-(methylthio)benzoic acid is assigned to a solute radical cation with a positive charge on the benzene ring. The reaction with specific one-electron oxidants also produced similar spectrum and the oxidation potential for the formation of solute radical cation is estimated to be between 1.4 and 1.6 V vs NHE. The reaction of eaq - with the solute showed the formation of a transient absorption band at 320 nm and is assigned to solute radical anion with reduction potential more negative than-1.5 V.  相似文献   

15.
The electron spin resonance (ESR) spectra of the transient radical pairs in the photoreduction of 1,5-diphenyl-1,4-pentadiyn-3-one ( I ) and 1,3-diphenyl-2-propyn-1-one ( II ) in sodium dodecyl sulfate (SDS) micellar solutions have been obtained by using the product-yield-detected ESR (PYESR) technique. The PYESR spectra, detected by tracing the microwave effect on the spin-adduct yield as functions of the magnetic field, show the ESR spectra of the ketyl radical of the ketone and SDS radical as the components of the radical pairs. In addition, the growth and the decay processes of the radical pair were observed through detecting the effect of microwave pulse as functions of the delay period between a laser pulse and the off and on time, respectively, of a microwave pulse. The absorption spectra of transient species have also been obtained by using the laser flash photolysis technique. Through the analysis of these data and molecular orbital calculations, the role of acetylenic groups in the photoreactivity of acetylenic ketones is discussed.  相似文献   

16.
Poly(4-hydroxystyrene) (PHS) has been used in lithography as a backbone polymer and is also a promising material for extreme-ultraviolet or electron beam lithography. The dynamics of PHS radical cations generated upon exposure to electron beam were investigated. The transient absorption of PHS was observed in the near-infrared region in p-dioxane solutions by pulse radiolysis. Charge resonance (CR) bands that represent pi-pi interaction between the two chromophores of the intramolecular PHS dimer radical cation were observed, whereas p-cresol shows no distinct CR band. Although the radical cations of phenol derivatives are known to be easily deprotonated, it was found that the dimer radical cation formation leads to less deprotonation by its charge resonance stabilization.  相似文献   

17.
An investigation of the photochemical properties of collagen Type I in acetic acid solution was carried out using nanosecond laser irradiation. The transient spectra of collagen solution excited at 266 nm show two bands. One of them with maximum at 295 nm and the second one with maximum at 400 nm. The peak at 400 nm is assigned to tyrosyl radicals. The first peak of the transient absorption spectra at 295 nm is probably due to photoionisation producing collagen radical cation. The transient for collagen solution in acetic acid at 640 nm was not observed. It is evidence that there is no hydrated electron in the irradiated collagen solution. The reactions of hydrated electrons and (*)OH radicals with collagen have been studied by pulse radiolysis. In the absorption spectra of products resulting from the reaction of collagen with e(aq)(-) no characteristic maximum absorption in UV and visible light region has been observed. In the absorption spectra of products resulting from the reaction of the hydroxyl radicals with collagen two bands have been observed. The first one at 320 nm and the second one at 405 nm. Reaction of (*)OH radicals with tyrosine residues in collagen chains gives rise to Tyr phenoxyl radicals (absorption at 400 nm).  相似文献   

18.
The use of vinyl radical cyclization in the simplification of synthesis design is probed with the sesquiterpene seychellene as a target. The construction is particularly effective because of very high stereoselectivity in the alkylation of a 2,2,2-bi- cyclo-5-octene-2-one system and because of the control offered by the specific location of the double bond in the product of the vinyl radical cyclization.  相似文献   

19.
The absorption and fluorescence of 16-(1-pyrene)-hexadecanoicacid adsorbed on silica have been investigated. Time-resolved transient diffuse reflectance spectra were recorded following pulsed nanosecond laser excitation at 355 nm of pyrene, 1-methylpyrene and 16-(1-pyrene)-hexadecanoicacid adsorbed on silica. In addition to a rapidly decaying transient, absorbing at 420 nm assigned as the triplet state, and of the radical cation, absorbing at 460 nm, another long living transient species absorbing at 420 nm was observed for 16-(1-pyrene)-hexadecanoic acid. The decay is reversible but complete recovery takes several hours. Although no definitive assignment could be made for this transient several possibilities are discussed. The radical cations of the investigated molecules are formed by a biphotonic process. The non-exponential decay of the radical cations could be analyzed in the framework of a Gaussian distribution of free energy barriers.  相似文献   

20.
One-electron oxidation of 2-selenouracil (2-SeU) by hydroxyl (OH) and azide (N3) radicals leads to various primary reactive intermediates. Their optical absorption spectra and kinetic characteristics were studied by pulse radiolysis with UV-vis spectrophotometric and conductivity detection and by the density functional theory (DFT) method. The transient absorption spectra recorded in the reactions of OH with 2-SeU are dominated by an absorption band with an λmax = 440 nm, the intensity of which depends on the concentration of 2-SeU and pH. Based on the combination of conductometric and DFT studies, the transient absorption band observed both at low and high concentrations of 2-SeU was assigned to the dimeric 2c-3e Se-Se-bonded radical in neutral form (2). The dimeric radical (2) is formed in the reaction of a selenyl-type radical (6) with 2-SeU, and both radicals are in equilibrium with Keq = 1.3 × 104 M−1 at pH 4 (below the pKa of 2-SeU). Similar equilibrium with Keq = 4.4 × 103 M−1 was determined for pH 10 (above the pKa of 2-SeU), which admittedly involves the same radical (6) but with a dimeric 2c-3e Se-Se bonded radical in anionic form (2●−). In turn, at the lowest concentration of 2-SeU (0.05 mM) and pH 10, the transient absorption spectrum is dominated by an absorption band with an λmax = 390 nm, which was assigned to the OH adduct to the double bond at C5 carbon atom (3) based on DFT calculations. Similar spectral and kinetic features were also observed during the N3-induced oxidation of 2-SeU. In principle, our results mostly revealed similarities in one-electron oxidation pathways of 2-SeU and 2-thiouracil (2-TU). The major difference concerns the stability of dimeric radicals with a 2c-3e chalcogen-chalcogen bond in favor of 2-SeU.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号