首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
研究了用NH4Cl作配位剂的配位还原法来制备的Pd-Fe/C催化剂,发现由于NH4Cl能与Pd形成配合物,使Pd Cl2的还原电位负移,与Fe Cl3的还原电位接近,从而在低温下制备得到了高合金化程度的Pd-Fe/C催化剂。XPS表征结果表明:Pd与Fe形成合金后,Pd的电荷密度的减少,增加了Pd0的含量。因此,得到的Pd-Fe/C催化剂对氧还原的电催化活性比用相同方法制得的Pd/C催化剂高,而且该催化剂对甲醇氧化没有电催化活性。  相似文献   

2.
富氧条件下 Mn/ZSM-5 选择催化 CH4 还原 NO   总被引:3,自引:0,他引:3  
 考察了富氧条件下 Mn/ZSM-5 催化剂上 CH4 选择催化还原 NO 反应, 并采用 H2程序升温还原、SO2程序升温表面反应和 NO程序升温脱附等手段对催化剂进行了表征. 结果表明, 催化剂活性与制备方法和 Mn 负载量密切相关. 离子交换法制备的 Mn/ZSM-5 催化剂活性明显优于浸渍法制备的催化剂; NO 转化率随着 Mn 负载量的增加而增加, 至 2.06% 时达到最大值 (57.3%), 然后随着 Mn 负载量的增加而降低. 采用离子交换法或较低 Mn 负载量 (≤ 2.06%) 抑制了催化剂中非化学计量的 MnOx (1.5 < x < 2) 物种的形成, 减缓了 CH4 的氧化燃烧反应, 因而 CH4 还原 NO 的选择性提高. 在含 SO2 体系中, Mn/ZSM-5 活性在 550 oC 以下时明显下降, 但在 600 oC 以上基本不受影响. 这是由于在 550 oC 以下时 SO2 在 Mn/ZSM-5 表面形成了稳定的吸附硫物种, 覆盖了部分活性位, 导致催化剂活性降低; 而在 600 oC 以上时含硫物种基本脱附完全, 因而对催化剂活性影响不大.  相似文献   

3.
戴友志  刘进兵  刘鸿  王毅  宋树芹 《催化学报》2011,32(7):1287-1291
采用化学镀技术制备了P掺杂的Pd3Fe1/C,并考察了其对氧还原的电催化性能.结果表明,制得催化剂的Pd分散性高、粒径分布均匀;P的掺杂降低了Pd3Fe1/C催化剂的Pd-Fe颗粒粒径,提高了Pd3Fe1/C上氧还原的活性,且一定程度上改善了Pd3Fe1/C催化剂的稳定性.当Fe/P摩尔比为1/10时,催化剂的性能最佳...  相似文献   

4.
通过溶剂分散热处理方法制备了一种吡咯和对甲苯磺酸(TsOH)共同修饰的碳载非贵金属复合催化剂(Fe-N/C-TsOH),并采用扫描电子显微镜(SEM)、X射线衍射(XRD)和X射线光电子能谱(XPS)对催化剂的形貌和组成成分进行表征. 借助循环伏安法(CV)和旋转圆盘技术研究了TsOH对催化剂在0.1 mol·L-1 KOH介质中催化氧还原性能的影响. 结果表明:TsOH的存在对催化剂催化氧还原反应(ORR)的活性影响很大. 以其制备的气体扩散电极在碱性电解质溶液中催化氧还原过程时转移的电子数为3.899,远比不含TsOH修饰的催化剂催化氧还原的电子数(3.098)高. 此外,研究发现600 ℃热处理过的Fe-N/C-TsOH催化剂表现出最佳的氧还原催化性能. 相比未经热处理过的Fe-N/C-TsOH催化剂,起峰电位和-1.5 mA·cm-2电流密度对应的电压分别向正方向移动30 和170 mV. XPS研究结果表明吡咯氮是催化剂主要活性中心,提供氧还原活性位,而TsOH加入形成的C―Sn―C和―SOn―有利于催化剂催化氧还原活性的提高,从而使该催化剂对氧还原表现出很好的电催化性能和选择性.  相似文献   

5.
主要考察了NO2对Cu/SAPO-34 分子筛催化剂在整个温度范围内(100-500 ℃)NH3选择性催化还原(SCR)NO性能的影响. 研究所使用样品为新鲜Cu/SAPO-34 催化剂在750 ℃下水热处理4 h 的稳定期样品.通过X射线衍射(XRD)和扫描电子显微镜(SEM)对样品的结构以及形貌进行表征,采用SCR活性评价、动力学实验以及原位漫反射傅里叶变换红外光谱(in situ-DRIFTS)表征催化剂的性能以及催化剂表面物种的变化. 活性评价实验结果表明,NO2会抑制催化剂的低温(100-280 ℃)活性,但其存在会提高催化剂的高温(280 ℃以上)活性. 与此同时,随着反应物中NO/NO2的摩尔比例减少,由于NH4NO3物种的分解,副产物(N22O)的浓度增大. 动力学结果表明,Cu/SAPO-34 催化剂上快速SCR反应的表观活化能(Ea=64.02 kJ·mol-1)比标准SCR反应的表观活化能(Ea=48.00 kJ·mol-1)更大. In situ-DRIFTS实验结果表明NO比NO2更容易在催化剂表面形成硝酸盐,并且NO2更容易与吸附在Brønsted 酸性位上的NH3物种反应生成NH4NO3. 低温下,催化剂表面的NH4NO3物种会覆盖SCR反应的活性位,造成活性降低,但在高温时,形成的NH4NO3物种一部分会被NO还原为N2,而另一部分会直接热分解为N2O,造成催化剂的选择性降低.  相似文献   

6.
三组Pt- Ru/C催化剂前驱体对其性能的影响   总被引:1,自引:0,他引:1  
分别以三组不同的Pt和Ru化合物为前驱体, 采用热还原法制备了Pt-Ru/C催化剂, 比较不同前驱体对催化剂性能的影响;通过XRD和TEM技术对催化剂的晶体结构及微观形貌进行了分析. 结果表明以H2PtCl6+RuCl3和自制(NH4)2PtCl6+Ru(OH)3为前驱体的催化剂Pt和Ru没有完全形成合金状态, 在Pt(111)和Pt(200)之间有Ru(101)存在;以Pt(NH3)2(NO2)2和自制含钌化合物为前驱体制备的催化剂未检测出Ru金属或其氧化物的衍射峰, Pt-Ru颗粒在载体上分散均匀, 粒径最小, 为3.7 nm. 利用玻碳电极测试了循环伏安、记时电流和阶跃电位曲线, 考核了上述催化剂对甲醇阳极催化氧化活性的影响;结果表明:以Pt(NH3)2(NO2)2和自制含钌化合物为前驱体制备的催化剂对甲醇的电催化氧化活性最高, 循环伏安曲线峰电流密度达11.5 mA•cm-2.  相似文献   

7.
以ZrO(NO32·2H2O为前驱体对多壁碳纳米管(MWCNTs)进行了改性并负载MnOx制备了MnOx/ZrO2/MWCNTs 催化剂. 考察了Zr 对催化剂低温选择性催化还原(SCR)反应活性的影响,并通过多种分析手段对催化剂的结构进行了表征. 结果表明Zr 的添加对催化剂的低温SCR活性具有显著的促进作用,当Zr 负载量为30%时,催化剂活性最佳. X射线衍射(XRD)、拉曼(Raman)光谱、透射电镜(TEM)、N2吸附-脱附的表征结果分析表明,适量的Zr 改性促进了MnOx在载体表面的分散,增强金属氧化物与MWCNTs 之间的作用,也能增加催化剂的比表面积、孔容和孔径. X 射线光电子能谱(XPS)、H2程序升温还原(H2-TPR)和NH3程序升温脱附(NH3-TPD)的分析结果则显示,Zr 能提高催化剂表面化学吸附氧浓度,促进Mn3+转化为Mn4+,从而使催化剂表面的活性位点增多,氧化还原能力增强,同时还提高了催化剂表面酸性位点的数量和强度,促进了NH3的吸附,是MnOx/ZrO2/MWCNTs 催化剂低温SCR活性提高的主要原因.  相似文献   

8.
改进液相还原法制备的Pd/C催化剂对甲酸氧化的电能   总被引:1,自引:0,他引:1  
用液相还原法制备炭载Pd(Pd/C)催化剂时,先用Na2CO3调节溶液pH值至8~9,然后加入还原剂还原PdCl2,由于PdCl2能与Na2CO3形成配合物,降低了得到的Pd粒子聚集倾向,使制得的Pd/C催化剂中Pd粒子的平均粒径和相对结晶度都较小,分别为3.57 nm和1.37。而没有加Na2CO3制得的Pd/C催化剂中Pd粒子的  相似文献   

9.
采用溶胶-凝胶法制备出偏硼酸锶(SrB2O4)光催化剂. 紫外光催化还原CO2合成CH4(在液相水中)的实验证明: SrB2O4催化剂的光催化活性略高于TiO2(P25). 利用X射线电子衍射谱(XRD)、傅里叶变换红外(FTIR)光谱、X射线光电子能谱(XPS)、透射电子显微镜(TEM)、荧光(PL)光谱和紫外-可见(UV-Vis)漫反射吸收光谱等技术, 研究了SrB2O4 催化剂的晶体结构、形貌和能带结构. 结果表明: SrB2O4 的价带为2.07 V (vs normalhydrogen electrode (NHE)), 低于(H2O/H+)的氧化还原电位Eredoxo (0.82 V (vs NHE)); 而导带为-1.47 V (vsNHE), 高于(CO2/CH4)的氧化还原电位Eredoxo (-0.24 V (vs NHE)). 因此, SrB2O4催化剂可以有效地光催化还原CO2生成CH4. 与TiO2(P25)相比, SrB2O4催化剂具有相对较高导带, 光生电子的还原能力强于TiO2(P25), 更有利于CH4的生成, 从而决定了SrB2O4催化剂光催化还原CO2合成CH4具有较高的光催化活性.  相似文献   

10.
采用硼氢化钠还原的方法合成了碳纳米管负载的钯基纳米催化剂(Pd/CNT,Pd7Ag3/CNT,Pd7Sn2/CNT,Pd7Ag1Sn2/CNT,Pd7Ag2Sn2/CNT和Pd7Ag3Sn2/CNT)。通过XRD,TEM和XPS对其进行了表征,结果表明,相比Pd/CNT和Pd-Ag(或Pd-Sn)催化剂的纳米颗粒,Pd-Ag-Sn催化剂展现出了更小的平均颗粒尺寸(2.3 nm)。此外,还通过循环伏安(CV)和计时电流法(CA)测试了这些催化剂对甲酸氧化的电活性,在酸碱介质中,Pd-Ag-Sn/CNT对甲酸氧化都表现出了更高的电流密度。其中,Pd7Ag2Sn2/CNT催化剂在酸碱介质中的电流密度分别是108.8和211.3 mA·cm-2,相应的Pd质量电流密度高达1 364和2 640 mA·mg-1,远远高于商业Pd/C,表明Pd-Ag-Sn/CNT催化剂对甲酸氧化表现出了极好的电催化活性。  相似文献   

11.
直接甲醇燃料电池;Pd-Fe/C催化剂;氧还原;合金化  相似文献   

12.
Nanostructured Fe/Pd-Fe catalysts are prepared first by the deposition of Fe-Zn onto the Fe electrode surface, followed by replacement of the Zn by Pd at open circuit potential in a Pd-containing alkaline solution. The surface morphology and composition of coatings are determined by scanning electron microscopy and energy dispersive X-ray techniques. The results show that the Fe/Pd-Fe coatings are porous structure and the average particle size of Pd-Fe is low, in the range of 30–80 nm. The electrocatalytic activity and stability of Fe/Pd-Fe electrodes for oxidation of methanol are examined by cyclic voltammetry and chronoamperometry techniques. The new Fe/Pd-Fe catalyst has higher electrocatalytic activity and better stability for the electro-oxidation of methanol in an alkaline media than flat Pd and smooth Fe catalysts. The onset potential and peak potential on Fe/Pd-Fe catalysts are more negative than that on flat Pd and smooth Fe electrodes for methanol electro-oxidation. All results show that the nanostructured Fe/Pd-Fe electrode is a promising catalyst towards methanol oxidation in alkaline media for fuel cell applications.  相似文献   

13.
Metallic palladium (Pd) electrocatalysts for oxygen reduction and hydrogen peroxide (H2O2) oxidation/reduction are prepared via electroplating on a gold metal substrate from dilute (5 to 50 mM) aqueous K2PdCl4 solution. The best Pd catalyst layer possessing dendritic nanostructures is formed on the Au substrate surface from 50 mM Pd precursor solution (denoted as Pd‐50) without any additional salt, acid or Pd templating chemical species. The Pd‐50 consisted of nanostructured dendrites of polycrystalline Pd metal and micropores within the dendrites which provide high catalyst surface area and further facilitate reactant mass transport to the catalyst surface. The electrocatalytic activity of Pd‐50 proved to be better than that of a commercial Pt (Pt/C) in terms of lower overpotential for the onset and half‐wave potentials and a greater number of electrons (n) transferred. Furthermore, amperometric it curves of Pd‐50 for H2O2 electrochemical reaction show high sensitivities (822.2 and ?851.9 µA mM?1 cm?2) and low detection limits (1.1 and 7.91 µM) based on H2O2 oxidation H2O2 reduction, respectively, along with a fast response (<1 s).  相似文献   

14.
A carbon supported Pd(Pd/C) catalyst used as the anodic catalyst in the direct formic acid fuel cells(DFAFC) was prepared via the improved complex reduction method with sodium ethylenediamine tetracetate(EDTA) as stabilizer and complexing agent.This method is very simple.The average size of the Pd particles in the Pd/C catalyst prepared with the improved complex reduction method is as small as about 2.1 nm and the Pd particles in the Pd/C catalyst possess an excellent uniformity.The Pd/C catalyst shows a high electrocatalytic activity and stability for the formic acid oxidation.  相似文献   

15.
The electrocatalytic nitrate reduction reaction (NO3RR) enables the reduction of nitrate to ammonium ions under ambient conditions. It was considered as an alternative reaction for the production of ammonia (NH3) in recent years. In this paper, we report that the Fe doping CoS2 nanoarrays can effectively catalyze the formation of NH3 from nitrate (NO3) under ambient conditions. This is mainly due to the increase of the NO3 reaction active site by Fe doping and the porous nanostructure of the catalyst, which greatly improves the catalytic activity. Specifically, at −0.9 V vs. RHE, the NH3 yield rate (RNH3) of Fe−CoS2/CC is 17.8×10−2 mmol h−1 cm−2 with Faraday Efficiency (FE) of 88.93 %. Besides, such catalyst shows good durability and catalytic stability, which provides the possibility for the future application of electrocatalytic NH3 production.  相似文献   

16.
One‐pot synthesis of carbon‐supported Pd‐Au alloy nanoparticles with well‐defined dendritic shape (Pd‐Auden/C) was achieved by co‐reduction of K2PdCl4/HAuCl4 mixtures in a molar ratio of 1:1 with hydrazine in the presence of Vulcan XC‐72R. The prepared Pd‐Auden/C exhibited significantly enhanced performance in the electrocatalytic oxidation of ethanol compared with dendritic Pd nanoparticles and a commercial Pd/C catalyst. Pd‐Auden/C even showed higher durability in electro‐oxidation of ethanol than the supported catalyst prepared by the deposition of presynthesized dendritic Pd‐Au nanoparticles on the carbon support. The experimental results clearly indicate that enhanced interaction between nanoparticle catalysts and carbon support through the one‐pot synthesis protocol can improve the durability of the electrocatalysts.  相似文献   

17.
为了解HClO4、NH4ClO4和NaClO4电解液对炭载Pd(Pd/C)催化剂电极对甲酸氧化的电催化性能的影响,在用X射线衍射(XRD)谱、能量色散谱(EDS)和透射电子显微镜(TEM)对Pd/C催化剂进行表征的基础上,采用电化学方法测量了Pd/C催化剂在不同电解液中对甲酸氧化的电催化性能.发现在不同电解液中,Pd/C催化剂对甲酸氧化的电催化活性和稳定性按NH4ClO4NaClO4HClO4的次序降低.由于甲酸的存在,不同电解液的pH相差较小,因此,电解液的pH影响较小,而阳离子的影响较大.在NaClO4电解液中的性能优于在HClO4电解液中的性能是pH的影响.在NH4ClO4电解液中的性能优于在NaClO4电解液中是由于NH4+能降低CO在Pd/C催化剂电极上的吸附强度和吸附量,这一发现对提高直接甲酸燃料电池(DFAFC)的性能很有意义.  相似文献   

18.
Herein, we report the controlled and direct fabrication of Cu2O/CuO thin film on the conductive nickel foam using electrodeposition route for the electrochemical reduction of carbon dioxide (CO2) to methanol. The electrocatalytic reduction was performed in CO2 saturated aqueous solution consisting of KHCO3, pyridine and HCl at room temperature. CO2 reduction was carried out at a constant potential of −1.3 V for 120 min to study the electrochemical performance of the prepared electrocatalysts. Cu2O/CuO shows better electrocatalytic activity with highest current density of 46 mA/cm2. The prepared catalyst can be an efficient and selective electrode for the production of methanol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号