首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
The electrochemical and spectroscopic properties of [Mn2(tpp)2(SO4)] (H2tpp=tetraphenylporphyrin=5,10,15,20‐tetraphenyl‐21H,23H‐porphine) were studied to characterize the stability of this compound as a function of solvent, redox state, and sulfate concentration. In non‐coordinating solvents such as 1,2‐dichloroethane, the dimer was stable, and two cyclic voltammetric waves were observed in the region for MnIII reduction. These waves correspond to reduction of the dimer to [MnII(tpp)] and [MnIII(tpp)(OSO3)]?, and reduction of [MnIII(tpp)(OSO3)]? to [MnII(tpp)(OSO3)]2?, respectively. In the coordinating solvent DMSO, [Mn2(tpp)2(SO4)] was unstable and dissociated to form [MnIII(tpp)(DMSO)2]+. A single voltammetric wave was observed for MnIII reduction in this solvent, corresponding to formation of [MnII(tpp)(DMSO)]. In non‐coordinating solvent systems, addition of sulfate (as the bis(triphenylphosphoranylidene)ammonium (PPN+) salt) resulted in dimer dissociation, yielding [MnIII(tpp)(OSO3)]?. Reduction of this monomer produced [MnII(tpp)(OSO3)]2?. In DMSO, addition of SO led to displacement of solvent molecules forming [MnIII(tpp)(OSO3)]?. Reduction of this species in DMSO led to [MnII(tpp)(DMSO)].  相似文献   

2.
A series of homoleptic ([TbIII(Pc)2]) and heteroleptic ([TbIII(Pc)(Pc′)]) TbIII bis(phthalocyaninate) complexes that contain different peripheral substitution patterns (i.e., tert‐butyl or tert‐butylphenoxy groups) have been synthesized in their neutral radical forms and then reduced into their corresponding anionic forms as stable tetramethylammonium/tetrabutylammonium salts. All of these compounds were spectroscopically characterized and their magnetic susceptibility properties were investigated. As a general trend, the radical forms exhibited larger energy barriers for spin reversal than their corresponding reduced compounds. Remarkably, heteroleptic complexes that contain electron‐donor moieties on one of the two Pc ligands show higher effective barriers and blocking temperatures than their homoleptic derivatives. This result is assigned to the elongation of the N? Tb distances in the substituted macrocycle, which brings the terbium(III) ion closer to the unsubstituted Pc, thus enhancing the ligand‐field effect. In particular, heteroleptic [TbIII(Pc)(Pc′)] complex 4 , which contains one octa(tert‐butylphenoxy)‐substituted Pc ring and one bare Pc ring, exhibits the highest effective barrier and blocking temperature for a single‐molecule magnet reported to date.  相似文献   

3.
The Schiff base ligand N1,N3‐bis(3‐methoxysalicylidene)diethylenetriamine (H2valdien) and the co‐ligand 6‐chloro‐2‐hydroxypyridine (Hchp) were used to construct two 3d–4f heterometallic single‐ion magnets [Co2Dy(valdien)2(OCH3)2(chp)2] ? ClO4 ? 5 H2O ( 1 ) and [Co2Tb(valdien)2(OCH3)2(chp)2] ? ClO4 ? 2 H2O ? CH3OH ( 2 ). The two trinuclear [CoIII2LnIII] complexes behave as a mononuclear LnIII magnetic system because of the presence of two diamagnetic cobalt(III) ions. Complex 1 has a molecular symmetry center, and it crystallizes in the C2/c space group, whereas complex 2 shows a lower molecular symmetry and crystallizes in the P21/c space group. Magnetic investigations indicated that both complexes are field‐induced single‐ion magnets, and the CoIII2–DyIII complex possesses a larger energy barrier [74.1(4.2) K] than the CoIII2–TbIII complex [32.3(2.6) K].  相似文献   

4.
The present study focuses on the formation and reactivity of hydroperoxo–iron(III) porphyrin complexes formed in the [FeIII(tpfpp)X]/H2O2/HOO? system (TPFPP=5,10,15,20‐tetrakis(pentafluorophenyl)‐21H,23H‐porphyrin; X=Cl? or CF3SO3?) in acetonitrile under basic conditions at ?15 °C. Depending on the selected reaction conditions and the active form of the catalyst, the formation of high‐spin [FeIII(tpfpp)(OOH)] and low‐spin [FeIII(tpfpp)(OH)(OOH)] could be observed with the application of a low‐temperature rapid‐scan UV/Vis spectroscopic technique. Axial ligation and the spin state of the iron(III) center control the mode of O? O bond cleavage in the corresponding hydroperoxo porphyrin species. A mechanistic changeover from homo‐ to heterolytic O? O bond cleavage is observed for high‐ [FeIII(tpfpp)(OOH)] and low‐spin [FeIII(tpfpp)(OH)(OOH)] complexes, respectively. In contrast to other iron(III) hydroperoxo complexes with electron‐rich porphyrin ligands, electron‐deficient [FeIII(tpfpp)(OH)(OOH)] was stable under relatively mild conditions and could therefore be investigated directly in the oxygenation reactions of selected organic substrates. The very low reactivity of [FeIII(tpfpp)(OH)(OOH)] towards organic substrates implied that the ferric hydroperoxo intermediate must be a very sluggish oxidant compared with the iron(IV)–oxo porphyrin π‐cation radical intermediate in the catalytic oxygenation reactions of cytochrome P450.  相似文献   

5.
The tetrathiafulvalene‐amido‐2‐pyridine‐N‐oxide ( L ) ligand has been employed to coordinate 4f elements. The architecture of the complexes mainly depends on the ionic radii of the lanthanides. Thus, the reaction of L in the same experimental protocol leads to three different molecular structure series. Binuclear [Ln2(hfac)5(O2CPhCl)( L )3] ? 2 H2O (hfac?=1,1,1,5,5,5‐hexafluoroacetylacetonate anion, O2CPhCl?=3‐chlorobenzoate anion) and mononuclear [Ln(hfac)3( L )2] complexes were obtained by using rare‐earth ions with either large (LnIII=Pr, Gd) or small (LnIII=Y, Yb) ionic radius, respectively, whereas the use of TbIII that possesses an intermediate ionic radius led to the formation of a binuclear complex of formula [Tb2(hfac)4(O2CPhCl)2( L )2]. Antiferromagnetic interactions have been observed in the three dinuclear compounds by using an extended empirical method. Photophysical properties of the coordination complexes have been studied by solid‐state absorption spectroscopy, whereas time‐dependent density functional theory (TD‐DFT) calculations have been carried out on the diamagnetic YIII derivative to build a molecular orbital diagram and to reproduce the absorption spectrum. For the [Yb(hfac)3( L )2] complex, the excitation at 19 600 cm?1 of the HOMO→LUMO+1/LUMO+2 charge‐transfer transition induces both line‐shape emissions in the near‐IR spectral range assigned to the 2F5/22F7/2 (9860 cm?1) ytterbium‐centered transition and a residual charge‐transfer emission around 13 150 cm?1. An efficient antenna effect that proceeds through energy transfer from the singlet excited state of the tetrathiafulvalene‐amido‐2‐pyridine‐N‐oxide chromophore is evidence of the YbIII sensitization.  相似文献   

6.
In the title compound, {[Tb(C12H8NO2)3(H2O)2]·H2O}n, the TbIII cation is in an eight‐coordinate environment, ligated by six carboxylate O atoms from five 3‐(pyridin‐4‐yl)benzoate (L) ligands and by two O atoms from water molecules. The cations are bridged by the carboxylate O atoms of the L ligands to form a two‐stranded polymeric chain which is assembled into a three‐dimensional supramolecular network through regular interchain O—H...N hydrogen bonding. On excitation at 320 nm, the title compound displays a series of emissions, which were assigned to the characteristic electronic transitions of TbIII.  相似文献   

7.
The title compound, [Fe(C9H10BN6)2]3[Fe(NCS)6] or [FeIII(Tp)2]3[FeIII(NCS)6] [Tp is hydro­tris(1‐pyrazolyl)­borate], crystallizes in space group ; the asymmetric unit comprises one‐half of an [Fe(Tp)2]+ cation, with its Fe atom on a crystallographic inversion centre, and one‐sixth of an [Fe(NCS)6]3− anion, on a site of symmetry. The anions and cations are stacked into a three‐dimensional supramolecular aggregate via two distinct types of weak C—H⋯π interactions.  相似文献   

8.
A fast electrochemical technique for the discrimination of one- and two-electron mechanisms in the oxidative addition of alkylating agents (RX) to corrinato- and porphyrinatocobalt(I) ([CoIL]) is described. It is based on single-scan voltammograms of [CoIIL] in the presence of RX and variable amounts of the radical trap acrylonitrile. In the first part of the voltammogram, [CoIIL] is reduced, and fast oxidative addition of RX to [CoIL] is triggered. If the reaction proceeds via a two-electron mechanism, [R CoIIIL] is formed independently of acrylonitrile concentration, but if a transient free radical R is involved, R is competitively trapped by acrylonitrile and [CoIIL] to yield, at high enough acrylonitrile concentration, exclusively the olefin-inserted [RCN CoIIIL]. [RCN CoIIIL] is reducible in the intermediate potential range, [R CoIIIL] at the negative end of the single-scan voltammogram. Hence, from the appearance of the reduction waves due to [RCN CoIIIL] and [R CoIIIL], the mechanism of oxidative addition of RX to [CoIL] is easily deduced. The method is applied to the study of the mechanistic borderline of oxidative addition using a series of 15 RX and 4 [CoL]'s, i.e. cobalamin (Cbl), heptamethyl cobyrinate (‘Cby’), (tetraphenylporphyrinato) cobalt ([Co(tpp])), and (octaethylporphyrinato) cobalt ([Co(oep)]). All non-activated primary alkyl iodides and bromides exhibit, at room temperature, pure two-electron mechanisms with all [CoIL]'s, except neopentyliodide with Cb1I and ‘Cby’I. All secondary alkyl iodides involve free radicals with Cb1I and ‘Cby’I, but a pure two-electron mechanism or a mixed one-electron two-electron mechanism with [CoI(tpp)] and [CoI(oep)]. The mechanistic switch from a two-electron to a one-electron mechanism for increasingly sterically demanding RX's occurs earlier with the supernucleophilic Cb1I and ‘Cby’I than with [CoI(tapp)] and [CoI(oep)].  相似文献   

9.
The title coordination polymer, [Cd3Co2(CN)12(C2H8N2)4]n, has an infinite two‐dimensional network structure. The asymmetric unit is composed of two crystallographically independent CdII atoms, one of which is located on a twofold rotation axis. There are two independent ethylenediamine (en) ligands, one of which bis‐chelates to the Cd atom that sits in a general position, while the other bridges this Cd atom to that sitting on the twofold axis. The Cd atom located on the twofold rotation axis is linked to four equivalent CoIII atoms via cyanide bridges, while the Cd atom that sits in a general position is connected to three equivalent CoIII atoms via cyanide bridges. In this way, a series of trinuclear, tetranuclear and pentanuclear macrocycles are linked to form a two‐dimensional network structure lying parallel to the bc plane. In the crystal structure, these two‐dimensional networks are linked via N—H...N hydrogen bonds involving an en NH2 H atom and a cyanide N atom, leading to the formation of a three‐dimensional structure. This coordination polymer is only the second example involving a cyanometallate where the en ligand is present in both chelating and bridging coordination modes.  相似文献   

10.
The phthalocyaninato double‐decker complexes [M(obPc)2]0 (M= YIII, TbIII, DyIII; obPc=2,3,9,10,16,17,23,24‐octabutoxyphthalocyaninato), along with their reduced ([M(obPc)2]?[P(Ph)4]+; M=TbIII, DyIII) and oxidized ([M(obPc)2]+[SbCl6]? (M=YIII, TbIII) counterparts were studied with 1H, 13C and 2D NMR. From the NMR data of the neutral (i.e., with one unpaired electron in the ligands) and anionic TbIII complexes, along with the use of dispersion corrected DFT methods, it was possible to separate the metal‐centered and ligand‐centered contributions to the hyperfine NMR shift. These contributions to the 1H and 13C hyperfine NMR shifts were further analyzed in terms of pseudocontact and Fermi contact shifts. Furthermore, from a combination of NMR data and DFT calculations, we have determined the spin multiplicity of the neutral complexes [M(obPc)2]0 (M=TbIII and DyIII) at room temperature. From the NMR data of the cationic TbIII complex, for which actually no experimental structure determination is available, we have analyzed the structural changes induced by oxidation from its neutral/anionic species and shown that the interligand distance decreases upon oxidation. The fast electron exchange process between the neutral and anionic TbIII double‐decker complexes was also studied.  相似文献   

11.
In the title one‐dimensional complex, {[MnIII(C9H10NO2)2]Cl}n, the Schiff base ligand 2‐[(2‐hydroxy­ethyl)­imino­methyl]­phenolate (Hsae) functions as both a bridging and a chelating ligand. The MnIII ion is six‐coordinated by two N and four O atoms from four different Hsae ligands, yielding a distorted MnO4N2 octahedral environment. Each [MnIII(Hsae)2]+ cationic unit has the Mn atom on an inversion centre and each [MnIII(Hsae)2]+ cation lies about another inversion centre. The chain‐like complex is further extended into a three‐dimensional network structure through Cl⋯H—O hydrogen bonds and C—H⋯π contacts involving the Hsae rings.  相似文献   

12.
Hereby we present the synthesis of several ruthenium(II) and ruthenium(III) dithiocarbamato complexes. Proceeding from the Na[trans‐RuIII(dmso)2Cl4] ( 2 ) and cis‐[RuII(dmso)4Cl2] ( 3 ) precursors, the diamagnetic, mixed‐ligand [RuIIL2(dmso)2] complexes 4 and 5 , the paramagnetic, neutral [RuIIIL3] monomers 6 and 7 , the antiferromagnetically coupled ionic α‐[RuIII2L5]Cl complexes 8 and 9 as well as the β‐[RuIII2L5]Cl dinuclear species 10 and 11 (L=dimethyl‐ (DMDT) and pyrrolidinedithiocarbamate (PDT)) were obtained. All the compounds were fully characterised by elemental analysis as well as 1H NMR and FTIR spectroscopy. Moreover, for the first time the crystal structures of the dinuclear β‐[RuIII2(dmdt)5]BF4 ? CHCl3 ? CH3CN and of the novel [RuIIL2(dmso)2] complexes were also determined and discussed. For both the mono‐ and dinuclear RuII and RuIII complexes the central metal atoms assume a distorted octahedral geometry. Furthermore, in vitro cytotoxicity of the complexes has been evaluated on non‐small‐cell lung cancer (NSCLC) NCI‐H1975 cells. All the mono‐ and dinuclear RuIII dithiocarbamato compounds (i.e., complexes 6 – 10 ) show interesting cytotoxic activity, up to one order of magnitude higher with respect to cisplatin. Otherwise, no significant antiproliferative effect for either the precursors 2 and 3 or the RuII complexes 4 and 5 has been observed.  相似文献   

13.
The TbIII compound [Tb(tci)(H2O)]n · n(DMF) ( 1 ) [H3tci = tri(2‐carboxythyl)isocyanurate, DMF = N,N′‐dimethylformamide] was synthesized by the reaction of terbium oxide, H3tci, and two drops of concentrated nitric acid in the presence of DMF and H2O. Single crystal X‐ray analysis reveals that it features a three‐dimensional (3D) framework based on infinite –Tb–COO–Tb– chains. The tci ligand in 1 links six different TbIII ions with its two carboxylate groups in μ2‐κ1O;κ2O,O′ mode and the third in μ2‐κ1O;κ1O′ mode. Thermal analysis reveals that it remains high thermal stability until 390 °C. Luminescence investigation shows that it emits characteristic green light of TbIII ions.  相似文献   

14.
Sandwich coordination complexes, [LnIII(H3L)2]X3?solvents, of Tb(III), Eu(III), Dy(III), Ho(III) and Er(III) were prepared with two new zwitterionic ester-substituted tripodal amine ligands, tris((2-hydroxy-5-n-butyl benzoate)aminoethyl)-amine (H3L1) and tris((2-hydroxy-5-methyl benzoate)aminoethyl)-amine (H3L2). These ligands were synthesised by condensation of the appropriately substituted salicylaldehyde with tris(2-aminoethyl)amine (tren) followed by in situ reduction of the tris-imine to tris-amine. Subsequent 2:1 reaction with lanthanide(III) ions yields [LnIII(H3L)2]X3?solvents (L = L1, L2; X = Cl?, NO3?; solvents = MeOH or H2O). All complexes were characterised by microanalysis, infrared spectroscopy, high resolution mass spectrometry and solid-state photoluminescence measurements. The crystal structures of [TbIII(H3L1)2]Cl3·6MeOH, [Dy(H3L1)2]Cl3·6MeOH, [EuIII(H3L1)2]Cl3·6MeOH and [TbIII(H3L1)2](NO3)3 reveal high-crystallographic ?3 symmetry at the O6-coordinated octahedral lanthanide(III) ions and that the tripodal ligands are bound in zwitterionic form: the protons from the phenolic oxygens have migrated to the amino nitrogens. Photoluminescence measurements indicate various degrees of energy transfer of the ligand chromophore to the lanthanide ions, as both ligand and lanthanide emission features are observed. Despite the high-crystallographic symmetry and the likely small transverse magnetic anisotropy of the complexes, no evidence of slow relaxation of the magnetisation, characteristic of a single-molecule magnet, was observed for [TbIII(H3L1)2]Cl3·MeOH·3H2O, [DyIII(H3L1)2]Cl3·6H2O, [HoIII(H3L1)2](NO3)3·2H2O, [ErIII(H3L1)2]·H2O and [TbIII(H3L1)2](NO3)3 down to 2.0 K.  相似文献   

15.
Employing nitronyl nitroxide lanthanide(III) complexes as metallo‐ligands allowed the efficient and highly selective preparation of three series of unprecedented hetero‐tri‐spin (Cu?Ln‐radical) one‐dimensional compounds. These 2p–3d–4f spin systems, namely [Ln3Cu(hfac)11(NitPhOAll)4] (LnIII=Gd 1Gd , Tb 1Tb , Dy 1Dy ; NitPhOAll=2‐(4′‐allyloxyphenyl)‐4,4,5,5‐tetramethylimidazoline‐1‐oxyl‐3‐oxide), [Ln3Cu(hfac)11(NitPhOPr)4] (LnIII=Gd 2Gd , Tb 2Tb , Dy 2Dy , Ho 2Ho , Yb 2Yb ; NitPhOPr=2‐(4′‐propoxyphenyl)‐4,4,5,5‐tetramethyl‐imidazoline‐1‐oxyl‐3‐oxide) and [Ln3Cu(hfac)11(NitPhOBz)4] (LnIII=Gd 3Gd , Tb 3Tb , Dy 3Dy ; NitPhOBz=2‐(4′‐benzyloxyphenyl)‐4,4,5,5‐tetramethyl‐imidazoline‐1‐oxyl‐3‐oxide) involve O‐bound nitronyl nitroxide radicals as bridging ligands in chain structures with a [Cu‐Nit‐Ln‐Nit‐Ln‐Nit‐Ln‐Nit] repeating unit. The dc magnetic studies show that ferromagnetic metal–radical interactions take place in these hetero‐tri‐spin chain complexes, these and the next‐neighbor interactions have been quantified for the Gd derivatives. Complexes 1Tb and 2Tb exhibit frequency dependence of ac magnetic susceptibilities, indicating single‐chain magnet behavior.  相似文献   

16.
Phenanthroline‐based hexadentate ligands L1 and L2 bearing two achiral semicarbazone or two chiral imine moieties as well as the respective mononuclear complexes incorporating various lanthanide ions, such as LaIII, EuIII, TbIII, LuIII, and YIII metal ions, were synthesized, and the crystal structures of [ML1Cl3] (M=LaIII, EuIII, TbIII, LuIII, or YIII) complexes were determined. Solvent or water molecules act as coligands for the rare‐earth metals in addition to halide anions. The big LnIII ion exhibits a coordination number (CN) of 10, whereas the corresponding EuIII, TbIII, LuIII, and YIII centers with smaller ionic radii show CN=9. Complexes of L2, namely [ML2Cl3] (M=EuIII, TbIII, LuIII, or YIII) ions could also be prepared. Only the complex of EuIII showed red luminescence, whereas all the others were nonluminescent. The emission properties of the Eu derivative can be applied as a photophysical signal for sensing various anions. The addition of phosphate anions leads to a unique change in the luminescence behavior. As a case study, the quenching behavior of adenosine‐5′‐triphosphate (ATP) was investigated at physiological pH value in an aqueous solvent. A specificity of the sensor for ATP relative to adenosine‐5′‐diphosphate (ADP) and adenosine‐5′‐monophosphate (AMP) was found. 31P NMR spectroscopic studies revealed the formation of a [EuL2(ATP)] coordination species.  相似文献   

17.
The self‐assembly of DyIII–3‐hydroxypyridine (3‐OHpy) complexes with hexacyanidocobaltate(III) anions in water produces cyanido‐bridged {[DyIII(3‐OHpy)2(H2O)4] [CoIII(CN)6]}?H2O ( 1 ) chains. They reveal a single‐molecule magnet (SMM) behavior with a large zero direct current (dc) field energy barrier, ΔE=266(12) cm?1 (≈385 K), originating from the single‐ion property of eight‐coordinated DyIII of an elongated dodecahedral geometry, which are embedded with diamagnetic [CoIII(CN)6]3? ions into zig‐zag coordination chains. The SMM character is enhanced by the external dc magnetic field, which results in the ΔE of 320(23) cm?1 (≈460 K) at Hdc=1 kOe, and the opening of a butterfly hysteresis loop below 6 K. Complex 1 exhibits white DyIII‐based emission realized by energy transfer from CoIII and 3‐OHpy to DyIII. Low temperature emission spectra were correlated with SMM property giving the estimation of the zero field ΔE. 1 is a unique example of bifunctional magneto‐luminescent material combining white emission and slow magnetic relaxation with a large energy barrier, both controlled by rich structural and electronic interplay between DyIII, 3‐OHpy, and [CoIII(CN)6]3?.  相似文献   

18.
A conjunction of Single-Molecule Magnet (SMM) behavior and luminescence thermometry is an emerging research line aiming at contactless read-out of temperature in future SMM-based devices. The shared working range between slow magnetic relaxation and the thermometric response is typically narrow or absent. We report TbIII-based emissive SMMs formed in a cyanido-bridged framework whose properties are governed by the reversible structural transformation from [TbIII(H2O)2][CoIII(CN)6] ⋅ 2.7H2O ( 1 ) to its dehydrated phase, TbIII[CoIII(CN)6] ( 2 ). The 8-coordinated complexes in 1 show the moderate SMM effect but it is enhanced for trigonal-prismatic TbIII complexes in 2 , showing the SMM features up to 42 K. They are governed by the combination of QTM, Raman, and Orbach relaxation with the energy barrier of 594(18) cm−1 (854(26) K), one of the highest among the TbIII-based molecular nanomagnets. Both systems exhibit emission related to the f–f electronic transitions, with the temperature variations resulting in the optical thermometry below 100 K. The dehydration leads to a wide temperature overlap between the SMM behavior and thermometry, from 6 K to 42 K. These functionalities are further enriched after the magnetic dilution. The role of post-synthetic formation of high-symmetry TbIII complexes in achieving the SMM effect and hot-bands-based optical thermometry is discussed.  相似文献   

19.
The synthesis and crystal structure (at 100 K) of the title compound, Cs[Fe(C11H13N3O2S2)2]·CH3OH, is reported. The asymmetric unit consists of an octahedral [FeIII(L)2] fragment, where L2− is 3‐ethoxysalicylaldehyde 4‐methylthiosemicarbazonate(2−) {systematic name: [2‐(3‐ethoxy‐2‐oxidobenzylidene)hydrazin‐1‐ylidene](methylamino)methanethiolate}, a caesium cation and a methanol solvent molecule. Each L2− ligand binds through the thiolate S, the imine N and the phenolate O atoms as donors, resulting in an FeIIIS2N2O2 chromophore. The O,N,S‐coordinating ligands are orientated in two perpendicular planes, with the O and S atoms in cis positions and the N atoms in trans positions. The FeIII cation is in the low‐spin state at 100 K.  相似文献   

20.
The title complex, catena‐poly[[[(2,2′‐bipyridine‐1κ2N,N′)tris(methanol‐2κO)(nitrato‐2κ2O,O′)‐μ‐cyanido‐1:2C:N‐cyanido‐1κC‐iron(II)neodymium(III)]‐di‐μ‐cyanido‐1:2′C:N;2:1′N:C] methanol solvate], {[FeIINdIII(CN)4(NO3)(C10H8N2)(CH3OH)3]·CH3OH}n, is made up of ladder‐like one‐dimensional chains oriented along the c axis. Each ladder consists of two strands based on alternating FeII and NdIII centers connected by cyanide bridges. Furthermore, two such parallel chains are connected by additional cyanide cross‐pieces (the `rungs' of the ladder), which likewise connect FeII and NdIII centers, such that each [Fe(CN)4(bipy)]2− unit (bipy is 2,2′‐bipyridine) coordinates with three NdIII centers and each NdIII center connects with three different [Fe(CN)4(bipy)]2− units. In the complex, the iron(II) cation is six‐coordinated with a distorted octahedral geometry and the neodymium(III) cation is eight‐coordinated with a distorted dodecahedral environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号